From ancient sugar factories to modern biorefineries

BIO-ETHANOL

Internal Driving-forces:

Pró-álcool (1975);

•Flex fuel vehicles.

External driving-forces:

•Global warming;

•Ethanol demand in 20 years estimated in 200 bilion liters year.

SUGAR

BIO-FERTILIZER

BIO-ENERGY

BIO-BYPRODUTOS

- •Ethanol plant \rightarrow 260-270 kg/TC
- •Sugar (50%) + ethanol (50%) \rightarrow 300 340 kg/TC
- •1 TC = 240 kg de bagasse (50% humidity) = 528 kg of steam + 240 kg of leaves.

Cane processing units have surplus of energy:

2.000MW (2007) with estimated potential of 20.000MW, equivalent to two ITAIPUS.

Composição média da cana-de- açúcar		
Composition	(%) m/m.	
Water	65-75	
Sugars	11-18	
Fiber	8-14	
Solubles	12-23	

Environmental impact (Macedo, 2002)

$$\frac{renewableEenergy_{output}}{fossilEnergy_{input}} = 8.3$$

Main process characteristics:

- Lack of sanitary criteria in the design;
- Mash w/ low ethanol titre (8.5% v/v, avg);
- Presence of contaminants & insolubles:
- High volume of vinasse produced (10-15 l/l);
- Energy consumption in distillation.
- Intensive use of sulfuric acid and human antibiotics or chemically related to (260 t in 2008 crop season).

Características fermentativas das leveduras contaminantes

Perdas Percentuais no Processo

CTC (1996)

Biostil/Biostil 2000 fermentation process (CHEMATUR)

- Vinasse recycle to fermentation;
- Fermentation under high osmotic pressure by salts (non sugars);

- 1990's: Focus on biocatalysts/fermentation modelling (Andrietta *et. al.*, 1994, 1995,1999)
 - Studies on populational dynamics in fermentation carried out by CTCopersucar spread the use of selected and more adaptaded yest strains.
 - Methodology to asses fermentative capability of yeasts based on kinetics, productivity and yield parameters (Andrietta *et. al.* 1999).
 - 2000's: Focus on contamination (Nolasco Junior, 2005,2009)
 - Studies comprising technologies to manage contamination preventively:
 - Design and validation of an optimal thermal process to must based on thermal degradation kinetics of sugars and heat resistance of spores of *B. stearothermophilus*.
 - Contamination modelling in fermentation through operational parameters.
 - Design of must treatment process to ethanol production (computational fluid dynamics)
 - Design of fermentation process based on sanitary criteria (bioprocess)

Optimized thermal process for must

$$B_{v} = f(R_{c}, \mu_{m\acute{a}xB}, B_{m})$$

Antibiotic therapy

- •Identical microbial ecology can be found in Brazilian sugar cane, US corn ethanol, beet and lignocellulosic compounds, the so called 2nd generation biofuel: gram positive bacteria from genera *Bacillus* e *Lactobacillus* (Klaushofer *et al.* 1998; Gallo e Canhos 1991; Skinner e Leathers, 2004; Klaushofer *et. al.*, 1998; Schell *et. al.*, 2007).
- •Resistance associated to continuous use of antimicrobials or Antibiotic Pressue.
- •US: 25000t/a, being 50% to human and 50% in non human use (agriculture, veterinary, acquaculture, animal feed).
- •Biofuel worldwide increasing list of non-human use of antibiotics.
- •Antibiotics are the scope of a current and future war: that of antibiotics resistance that will be lost if there is not a global awareness about the problem adopting strategies to defeat it (Wannmacher 2004).

Company Overview

Amyris corporate office in Emeryville, CA

Amyris Crystalsev Biocombustíveis in Campinas, Brazil

- Amyris is the leader in the race to produce and market advanced renewable fuels and chemicals
 - Proprietary technology that creates best-in-class fuels and chemicals ("programmed yeast")
 - Using industrial platform at sugar mills to ferment higher value added products
 - Comprehensive business model (i.e. GreenLaneTM) that enables us to take fuel from the plant to the market

Amyris today

- Amyris Fuels LLC
- Renewable fuels marketing and distribution

Europe

 Anti-malarial partnership with sanofi-aventis

Emeryville, California

- ABI headquarters
- · labs, pilot plant

<u>Alabama</u>

 sugar cane nursery project

Campinas, Brazil

- Amyris Brasil
- labs, pilot plant & demo facility
- production in 2011

... combining great science and innovative business to create a more sustainable world

Refinery

Petroleum products

Amyris renewable pathway

Oil

+

> 50,000 isoprenoid compounds

Sugar cane Amyris genetically engineered yeast

Cane mill

Bio-derived products

diesel

2020 estimate 450 billion gallons

jet fuel

2020 estimate 124 billion gallons

specialty chemicals: synthetic rubbers, lubricants, etc.

malaria drug

non-profit: treat over 200 million people annually

The power of biotechnology: traditional fermentation producing higher value diesel

Micrograph of fermentation fluids from production of Amyris Renewable Diesel (April, 2008)

diesel

Jet/Gasoline

Amyris's sugarcane to diesel production process

Dehydration Fermentation Cane processing This stage not required No change to the most Engineered veast because hydrocarbons capital intensive part of Modified fermenters to separate easily from water ethanol production satisfy oxygen delivery Cane **Recovery Fermentation** Purification **Processing** (Centrifuges) Cane Chemical **Processing Finishing Purification Electricity Generation** Inexpensive process to Can generate extra electricity remove low-level impurities from the steam normally used to drive the distillation **Finishing** Chemical step converts precursor into final product

Converting na ethanol mill into a bio-refinery

Campinas pilot plant – Fermentation area

Campinas pilot plant – Downstream separation area

Campinas Pilot Plant – media preparation area

• Thanks!

Jonas Nolasco Junior Process engineering nolasco@amyris.com