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The Energy Biosciences Institute 

• $500M committed over 10 years 
• Research mandate to explore the application of 

modern biological knowledge to the energy 
sector 
– Cellulosic fuels  
– Petroleum microbiology  (eg., corrosion, souring, 

reservoir flow, remediation…) 
– Bio-based chemicals 
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Scope of life cycle analysis of GHG emissions 
from production of lignocellulosic ethanol 

Scown et al Environ. Res. Lett. 7 (2012) 014011 



Net Energy Yield of Biofuels 
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Wang et al., Env. Res. Lett7, 045905 



Magnitude of ILUC effects uncertain 
(ILUC = indirect land use change) 

Source: RFA, 2011 



Land Usage 

AMBIO 23,198  (Total Land surface 13,000 M Ha) 

Forest & 
Savannah 

Cereal 

4.6% Pasture & Range 

23.7% 

30.5% 

Other crops 
6.9% 

Nonarable 

34.4% 



More than 1.5 billion acres of degraded or 
abandoned land is available for cellulosic crops 

Cai, Zhang, Wang Environ Sci Technol 45,334 

Campbell et al., Env. Sci. Technol. (2008)  42,5791 



Miscanthus gigantaeus: An energy crop 

Yield of 26.5 tons/acre observed by Young & colleagues 
in Illinois, without irrigation 
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Response of Miscanthus to nitrogen fertilizer  

Christian, Riche & Yates  Ind. Crops Prod. (2008) 
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Desert plants can greatly expand the 
availability of land for biomass production 

(Agave in Madagascar) 

Borland et al. (2009) J. Exp. Bot. doi:10.1093/jxb/erp118 
 



Summary of Syngas-Liquids Processes 
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Richard Bain, NREL 
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Ethanol Production Schemes 

Slide Courtesy of Bruce Dale 
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Breakdown of Capital Costs for NREL 
Biorefinery 

Source : Paul Willems from NREL design, May 2011 
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Strategies for reducing costs  

• Reduction in capex 
– Minimize number of unit processes, minimize residence 

time, minimize down time, eliminate solids boiler, 
minimize wastewater 

• Reduction in opex 
– Operate under optimal conditions (sugar, fuel, nutrients, 

temperature…), minimize enzyme inactivation, recycle 
enzyme, maximize longevity, control contaminaion 



Batch processes have many inefficiencies 
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An ideal process 
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Plugged reactor concept 
based on continuous removal of fuel 

Fuel 
producing 
organism 

Sugar 

membrane Fuel 



Major challenges to continuous process 

• Remove all lignin without losing sugar 

• Simultaneous utilization of all sugars 

• Continuous fuel removal  

• Hygiene 

 



Use of cellobiose instead of glucose allows 
simultaneous conversion of xylose to 

ethanol 

Ha et al PNAS 2011 108 (2) 504-509 

 



Simultaneous fermentation of pentose and 
hexose sugars 

Ha et al PNAS 2011 108 (2) 504-509 



Sources of biodiesel 

CRC Report AVFL-17 

Electron micrograph of a cell 
in an oilseed cotyledon 

Triacylglycerol 
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Routes to potential fuels 

Fortman et al, Trends Biotechnology 26,375 



An example of hybrid fuels  

23 
Toste et al, Nature 2012 

 
Fermentation Sugars 

H 2 H 2 H 2 



A Process Scheme for Production of ABE-

Diesel 

Anbarasan,  Baer et al, Nature doi: 10.1038/nature11594 (2012) 
 

Workshop 
March 11 



Concluding comments 

• Biofuels can have significant net GHG benefits 

• There is significant underutilized land available 
for expanded biomass production 

• We will see a gradual transition from feed crops 
to cellulosic biofuels (and sugarcane) 

• There are are many opportunities to fundamentally 
improve the efficiency of production and 
diversification of biofuels 

• Drop-in and “hybrid” fuels will expand the types of 
fuels and extend supply 

 

 



www.energybiosciencesinstitute.org 


