

BIOEN-BIOTA-PFPMCG-SCOPE Joint Workshop on Biofuels & Sustainability 26/02/2013 - FAPESP - São Paulo

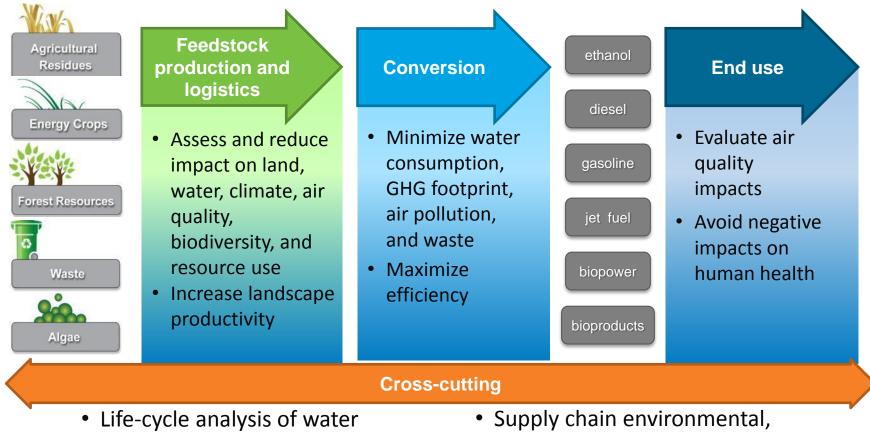
Biofuels – Lessons Learned

BIOEN BIOTA PFPMCG SCOPE Joint Workshop on Biofuels and Sustainability

Helena L. Chum

São Paulo, February 26, 2013

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.


Outline

- Context of Presentation
- Bioenergy Industry Characterization
- America's Leaders Benchmarking and Improvements
- Design for sustainability
- Commoditization of Biofuels
- Technology Development: abundance of feedstocks, pathways, and energy products
- What does it take to get to market?
- Some key conclusions

DOE Bioenergy Technology Office's Sustainability Activities

ENERGY Energy Efficiency & Renewable Energy

Identifying and addressing the challenges for sustainable bioenergy production through field trials, applied research, capacity building, modeling, and analysis.

 Supply chain environmental, economic, and social factors

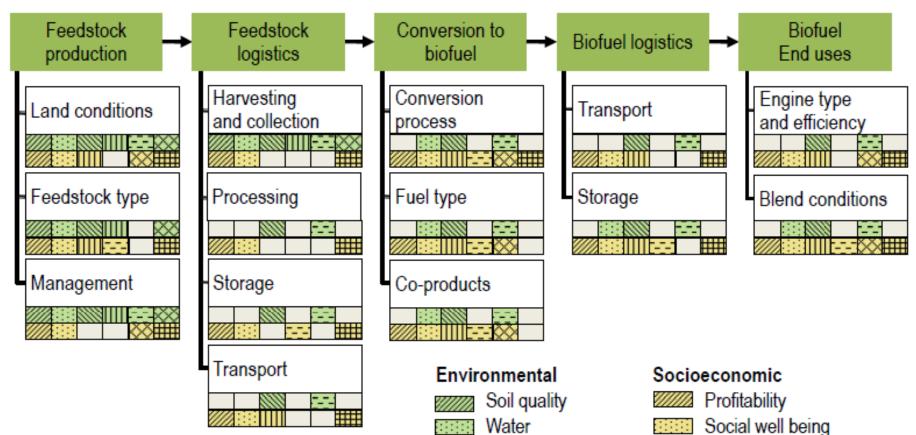
"Defining" Sustainability

• As defined in Executive Order 13514

To create and maintain conditions under which humans and nature can exist in productive harmony, that permit fulfilling the social, economic, and other requirements of present and future generations.

- Bioenergy Technology Office's sustainability efforts
 - Maximize the benefits of bioenergy, domestically and globally
 - Enable long-term operations of feedstock and fuel production while protecting natural systems and human well-being
 - Enable the industry to take advantage of emerging environmental markets
 - Anticipate and mitigate showstoppers (e.g., resource constraints, regulations, conflicting social priorities)
 - Address a range of other environmental and socio-economic issues (e.g., water scarcity, climate change, human health)

Looking at the biofuel supply chain in terms of sustainability indicators


External trade

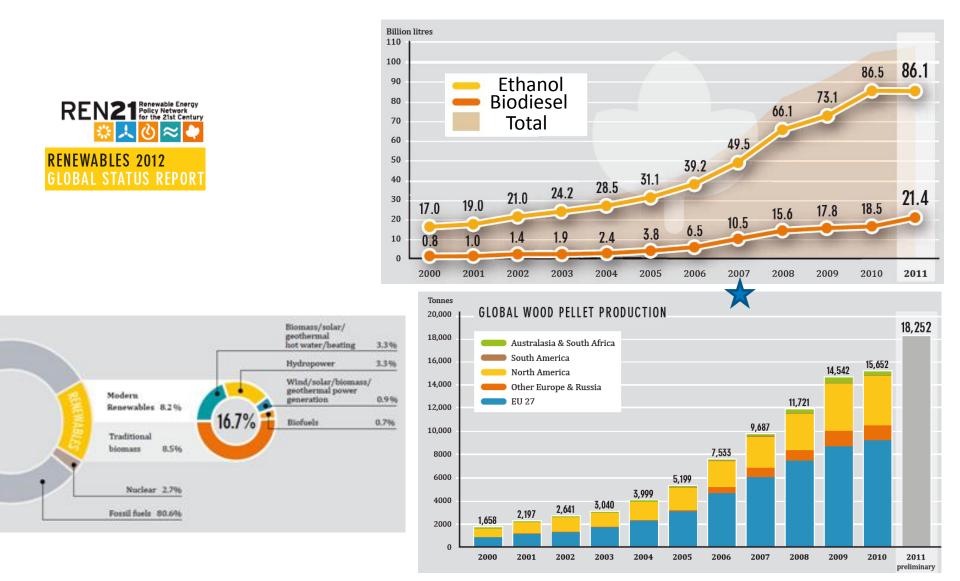
Categories without major effects

Energy security

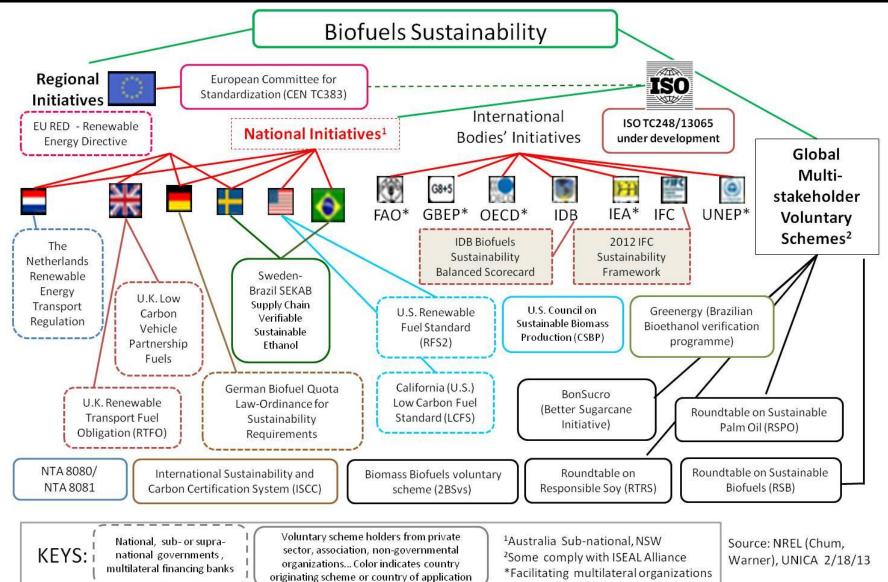
Resource conservation

Social acceptability

Greenhouse gases


Biodiversity

Productivity


Air quality

Efroymson et al. (2013) Environmental Management 52:291-306. Dale et al. (2013) Ecological Indicators 26:87-102.

Biomass Energy – 53 EJ (2011) #4 Primary Source

A maze of regulations, sustainability schemes, standards, and indicators, in addition to those of agriculture and forestry

See http://www.bioenergytrade.org/ongoing-work/monitoring-sust-certification-of-bioenergy.html

NATIONAL RENEWABLE ENERGY LABORATORY

GBEP Consensus Indicators for government programs/policies

Environmental		Social	Economic			
INDICATORS						
1.	Life-cycle GHG emissions	 Allocation and tenure of land for new bioenergy production 	17. Productivity			
2.	Soil quality	10. Price and supply of a national food basket	18. Net energy balance 🛛 🔶 🖈			
3.	Harvest levels of wood resources	11. Change in income	19. Gross value added			
4.	Emissions of non-GHG air pollutants, including air toxics	12. Jobs in the bioenergy sector	20. Change in consumption of fossil fuels and traditional use of biomass			
5.	Water use and efficiency	 Change in unpaid time spent by women and children collecting biomass 	21. Training and re-qualification of the workforce			
6.	Water quality	 Bioenergy used to expand access to modern energy services 	22. Energy diversity			
7.	Biological diversity in the landscape	15. Change in mortality and burden of disease attributable to indoor smoke	23. Infrastructure and logistics for distribution of bioenergy			
8.	Land use and land-use change related to bioenergy feedstock production	16. Incidence of occupational injury, illness and fatalities	24. Capacity and flexibility of use of bioenergy			

Environ. Res. Lett. 7 (2012) 045905

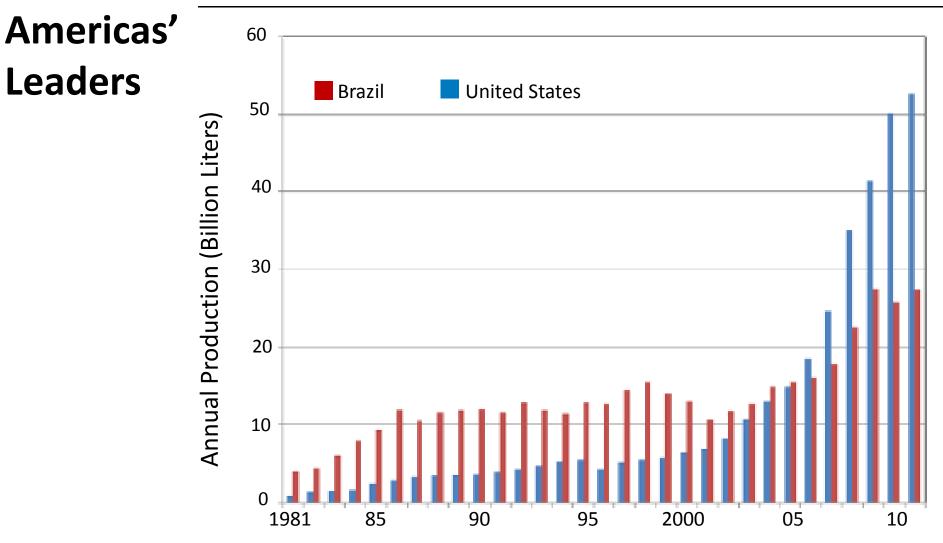
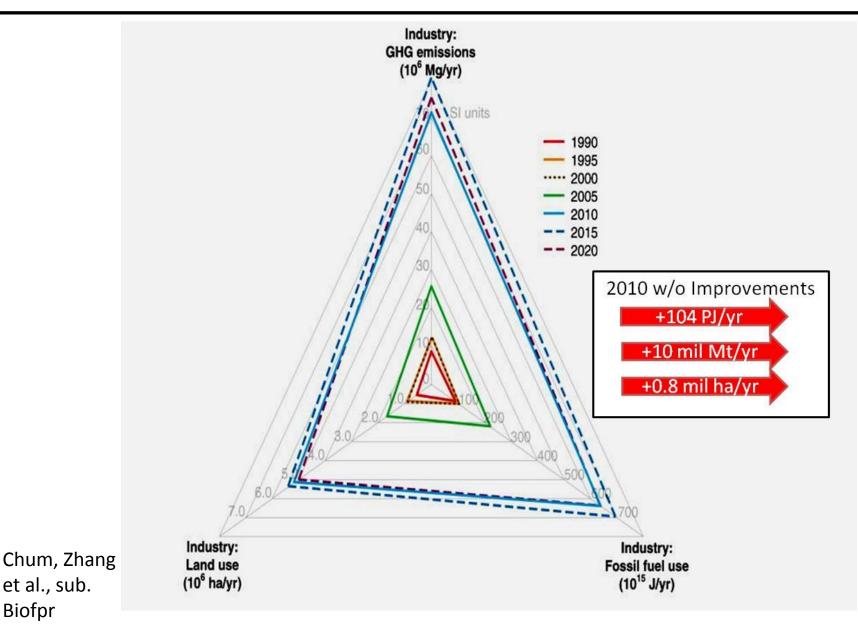
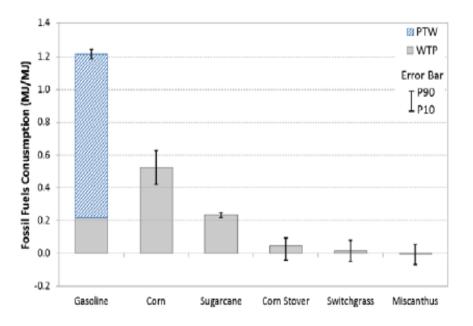



Figure 1. Annual ethanol production in the US and Brazil (based on data from the Renewable Fuels Association (RFA 2012) and Brazilian Sugarcane Association (UNICA 2012)).

M. Wang et al. (ANL)

Impact of corn and dry mill process improvements


Adding Cellulosic Ethanol

Environ. Res. Lett. 7 (2012) 045905

M Wang et al

Table 6. Energy balance and energy ratio of bioethanol.					
	Corn	Sugarcane	Corn stover	Switchgrass	Miscanthus
Energy balance (MJ l-1) ^a	10.1	16.4	20.4	21.0	21.4
Energy ratio	1.61	4.32	4.77	5.44	6.01

^a A liter of ethanol contains 21.3 MJ of energy (lower heating value).

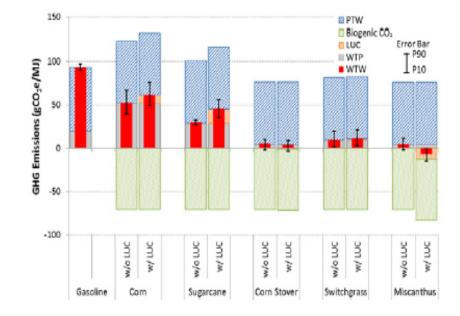
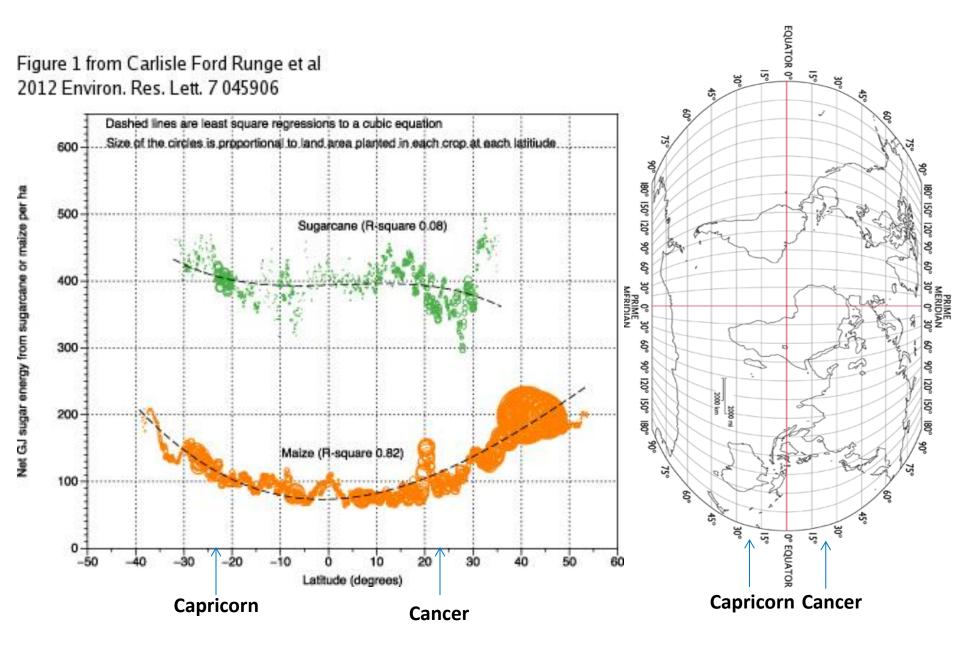
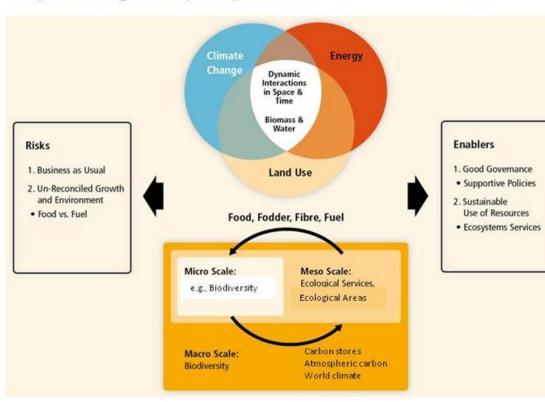



Figure 3. Well-to-wheels results for fossil energy use of gasoline and bioethanol.

Figure 4. Well-to-wheels results for greenhouse gas emissions in CO₂e for six pathways.

Latitude, soil conditions, biomass type matter


Uncertainties

- Biofuel sustainability standards driving the rise in the use of LCA as a tool in decision making
- Methodological uncertainties attributional LCA (ALCA) coproduct treatments, boundaries; incomplete accounting of global climate change forcings, latitude/longitude/geography dependent
- Market-mediated changes in land use because of the expansion of biofuels (combining multiple models and data) is a consequential LCA with uncertainties. Assumes scenarios of fuel volumes.
- Lack of cause (ethanol expansion) and effect (increased expansion of sugarcane plantations in the Amazonas region) demonstrated in several papers.
- Science and data mining is still improving and direct measurements of land cover, land cover change, land use change is very important (e.g., Brazilian INPE and collaborators data)
- Carbon Accounting for GHG inventories may be too simplistic

Land-use change and bioenergy

• The positive greenhouse gas balance of biofuels can be affected by direct and indirect land-use changes.

• Proper governance of land use, zoning, and choice of biomass production systems are key challenges for policy makers.

Doomsters vs. Boomsters

simplified scenarios can be replaced by win-win synergistic strategies such as:

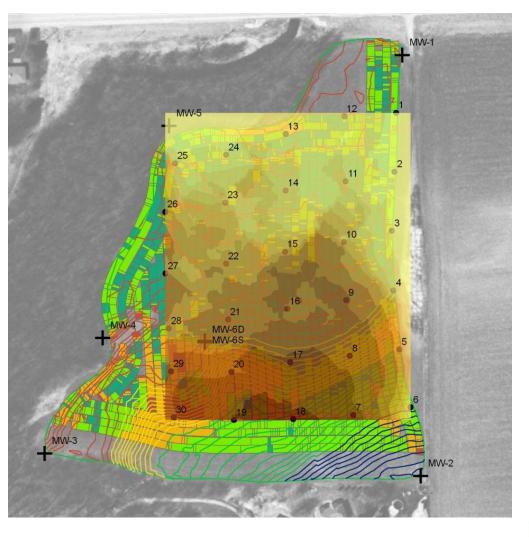
•Bioenergy uses (including cascading uses) improve post harvest biomass use efficiency


• Wise integration of bioenergy into agriculture and forestry landscapes can increase total biomass output from land and also mitigate several of the well documented consequences of present day agriculture and forestry (e.g., eutrophication, soil degradation, spread of resistant pests, "gene leakage" to outside croplands producing super weeds, shrinking lakes and falling groundwater tables, and others....)

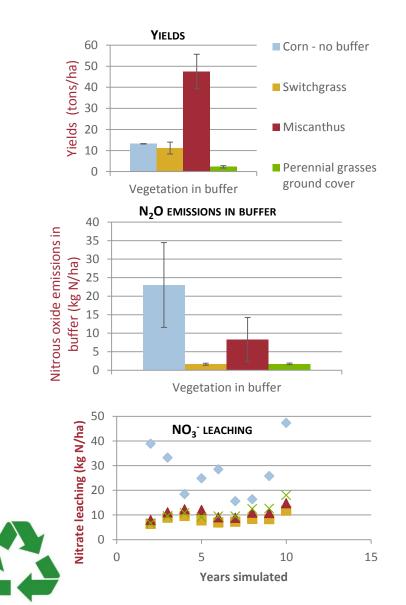
INTERGOVERNMENTAL PANEL ON CLIMATE CHARGE

Biomass production and nitrogen recovery

Producing bioenergy crops without competing with food and feed crops


Potential production and feedstock intensification from "marginal" land

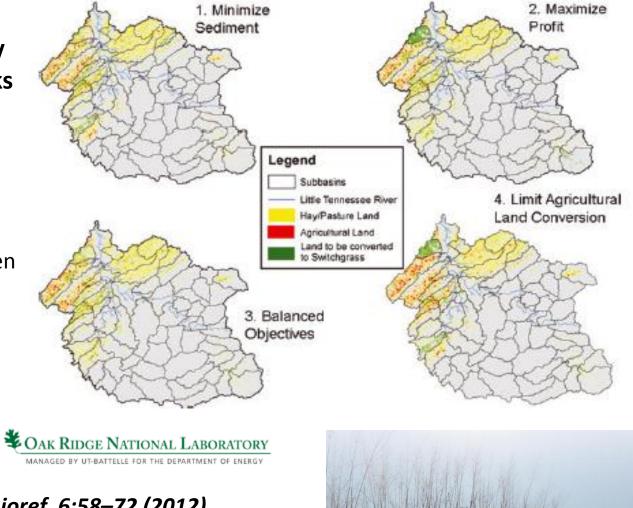
Negri et al., ANL, DOE OBP Program Review, obpreview2011.govtools.us/.


Biomass mitigating nitrate transport 4 ft under a corn field

Landscape placement of biomass crop for by-design sustainability.

DNDC model results and field validation in Fairbury, IL

Negri et al., ANL, DOE OBP Program Review, obpreview2011.govtools.us/



An optimization model can identify "ideal" sustainability conditions for new feedstocks and conversion plants

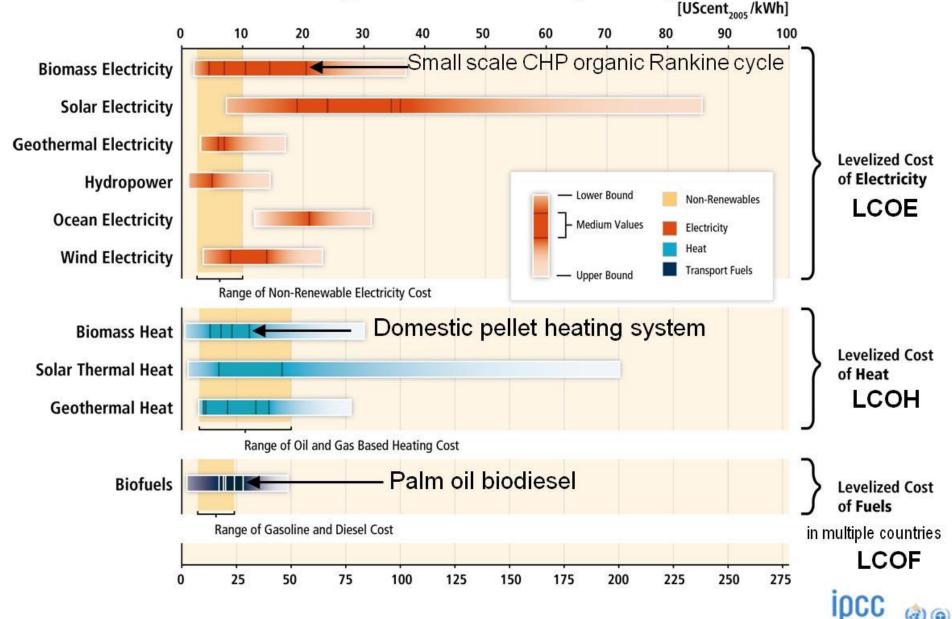
Spatial optimization model

 Identifies where to locate plantings of bioenergy crops given feedstock needs for Vonore, TN cellulosic biofuel refinery

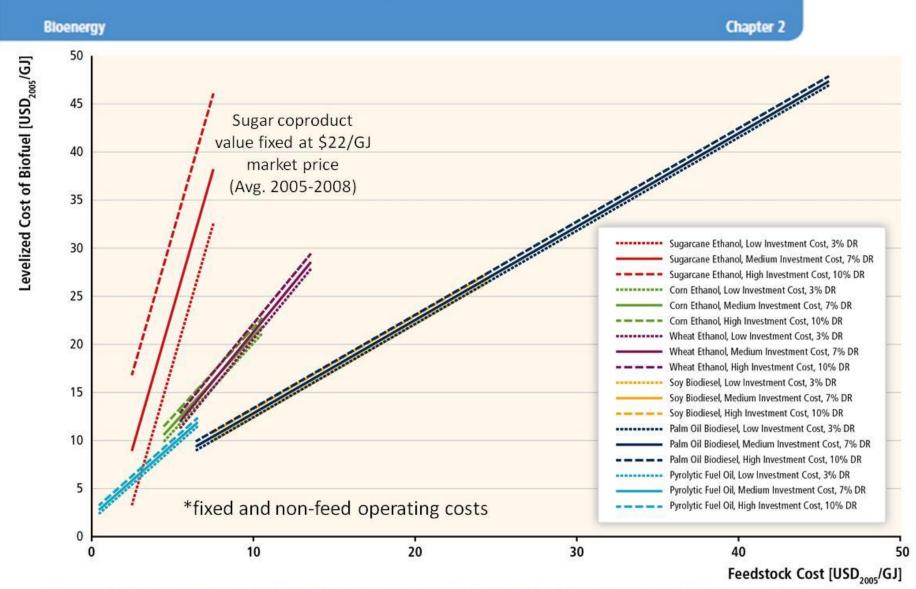
Considering
 Farm profit
 Water quality constraints

Parish et al. Biofuels, Bioprod. Bioref. 6:58–72 (2012)

RE costs are still higher than existing energy prices, but in various settings RE is already competitive.


SRREN Annex II

1st time that IPCC assembles comparative costs of all renewables and, in particular, with multiple biomass options to electricity, heat and electricity, biofuels and some biorefineries.


"The levelized cost of energy represents the cost of an energy generating system over its lifetime; it is calculated as the per-unit price at which energy must be generated from a specific source over its lifetime to break even. It usually includes all private costs that accrue upstream in the value chain, but does not include the downstream cost of delivery to the final customer; the cost of integration, or external environmental or other costs. Subsidies and tax credits are also not included."

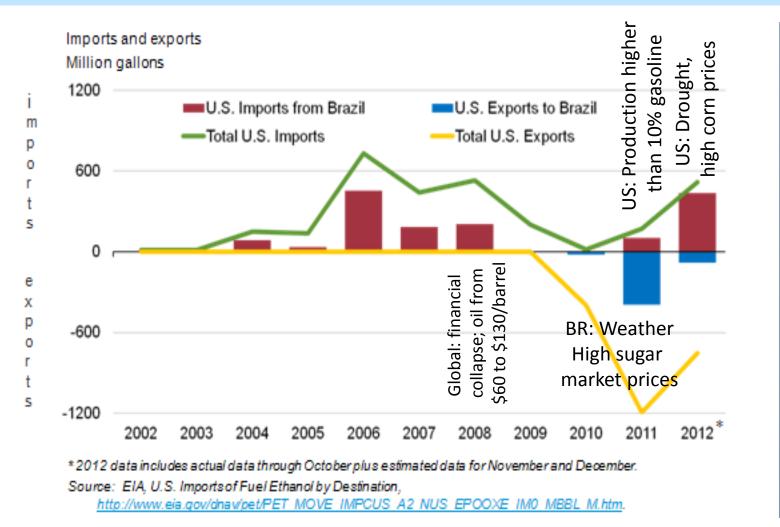
> Rich Bain, Helena Chum, NREL Contributor at IPCC TSU: Steffen Schlömer Contributor: Jose Moreira

RE costs are still higher than existing energy prices, but in various settings RE is already competitive.

LCOF sensitivity to feedstock/investment costs and discount rate for midpoints of other variables* in multiple countries

References: Delta-T Corporation (1997); Sheehan et al. (1998b); McAloon et al. (2000); Rosilio-Calle et al. (2000); McDonaid and Schrattenholzer (2001); Ibsen et al. (2005); Jechura (2005); Bohlmann (2006); CBOT (2006); Haas et al. (2006); Oliverio (2006); Oliverio and Ribeiro (2006); Ringer et al. (2006); Shapourl and Salassi (2006); USDA (2006); Bain (2007); Kine et al. (2007); USDA (2007); Mtstad (2008); RFA (2011); University of Illinois (2011).

ipcc 👌 🔞 😡


2011 Biofuels estimated production costs

TRANSPORT FUELS	Typical Characteristics	Estimated Production Costs (US cents/Litre)	
Biodiesel	Feedstocks: soy, rapeseed, mustard seed, palm, jatropha, waste vegetable oils, and animal fats	Range: 16.5–177	Argentina (soy): 42–91; USA (soy): 55–82; Indonesia/Malaysia/ Thailand/Peru (palm oil): 24–100
Ethanol	Feedstocks: sugar cane, sugar beets, corn, cassava, sorghum, wheat (and cellulose in the future)	Range: 20–102	Brazilian sugar cane: 68 (2011) U.S. corn ethanol (dry mill): 40 (2010)

Commoditization of Biofuels

Biofuels reached some insurance of supplies through trade Biofuels are 3% of global road transport fuels (energy basis)

Complex set of options - approximate development stages (I)

Chapter 2

Bioenergy

IUCU

Table 2.5 | Examples of stages of development of bioenergy: thermochemical (orange), biochemical (blue), and chemical routes (red) for heat, power, and liquid and gaseous fuels from solid lignocellulosic and wet waste biomass streams, sugars from sugarcane or starch crops, and vegetable oils (IEA Bioenergy, 2009; Alper and Stephanopoulos, 2009; Regalbuto, 2009).

Type of	Type of Product	Stage of Development of Process for Product(s) or System(s)				
Plant		Basic and Applied R&D	Demonstration	Early Commercial	Commercial	
	Densified Biomass	Torrefa	ction Hydrothermal Oil (Hy Oil)	Pyrolysis Oil (Py Oil)	Pelletization	
i.	Charcoal	Pyrolys	sis (Biochar)	1	Carbonization	
cellulos	linet			Small Scale Gasification	Combustion Stoves	
e Ligno	Heat	Combustion		Py/Hy Oil	Home/District/Industrial	
Low Moisture Lignocellulosic		Combustion Coupled with	Stirling Engine	ORC1	Stearn Cycles	
Low I	Power or CHP	Co-Combution or Co-Firing with Coal	Indirect	Parallel	Direct	
		Gasification (G) or Integrated Gasification (IG)	uel Cell IG-Gas Turbine			
			IG-Combined Cycle	G and Steam Cycle	inco	

ORC = Organic Rankine Cycle

Complex set of options - approximate development stages (II)

Chapter 2

Bioenergy

Table 2.5 | Examples of stages of development of bioenergy: thermochemical (orange), biochemical (blue), and chemical routes (red) for heat, power, and liquid and gaseous fuels from solid lignocellulosic and wet waste biomass streams, sugars from sugarcane or starch crops, and vegetable oils (IEA Bioenergy, 2009; Alper and Stephanopoulos, 2009; Regalbuto, 2009).

Type of	Type of Product	Stage of Development of Process for Product(s) or System(s)					
Plant		Basic and Applied R&D	Demonstration	Early Com	mercial	Commercial	
		Anaerobic Digestion to Blogas					
			2-Stage			Landfills (1-Stage)	
laste	Heat	Microbial Fuel Cell		Reforming to Hydrogen (H ₂)		Small Manure Digesters	
Wet Waste	or Power or Fuel			Biogas Upgrading to Methane			
		Hydrothemal Processing to Oils or Gaseous Fuels					
or Crops	Fuels	Sugar Fermentation		Butanol		Ethanol	
Starch Crops		Microbial Processing ² H ₂ Gasoline/ Die	esel/ Jet Fuel Biobutar	nol/Butanols ¹			
Waste		Extraction and Esterification				Biodiesel	
Oils Vegetable or Waste		Extraction and Hydrogenation		Renewat	ble Diesel		
Veget		Extraction and Refining		Jet Fuel			

Notes: 1. ORC: Organic Rankine Cycle; 2. genetically engineered yeasts or bacteria to make, for instance, isobutanol (or hydrocarbons) developed either with tools of synthetic biology or through metabolic engineering. 3. Several four-carbon alcohols are possible and isobutanol is a key chemical building block for gasoline, diesel, kerosene and jet fuel and other products.

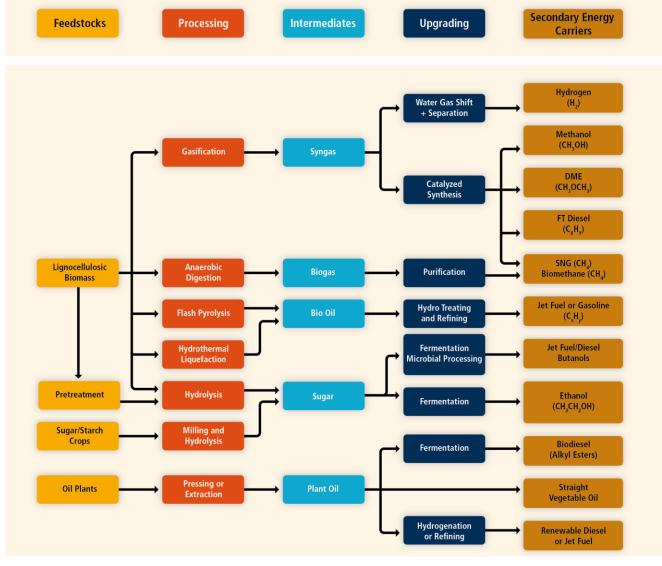
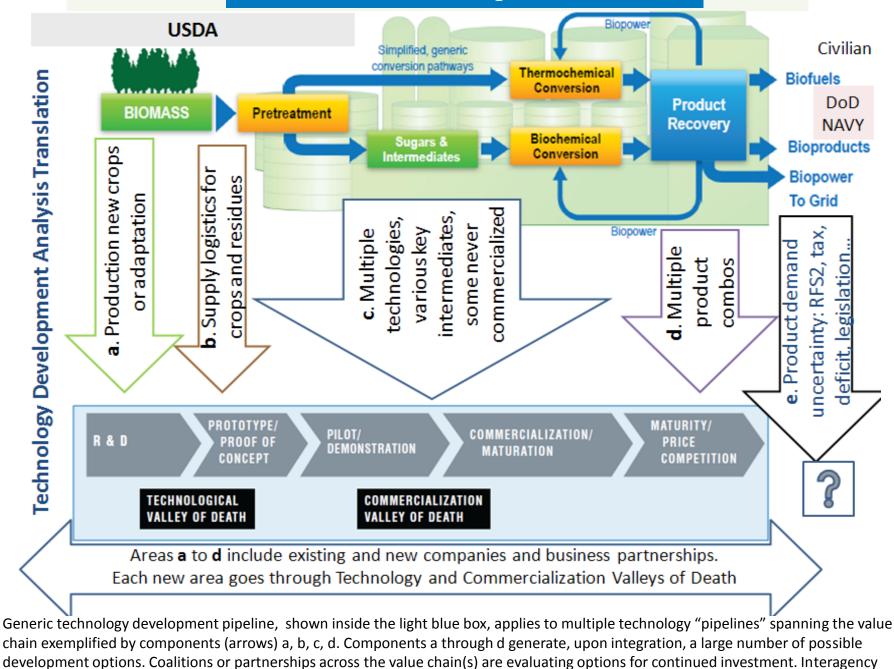
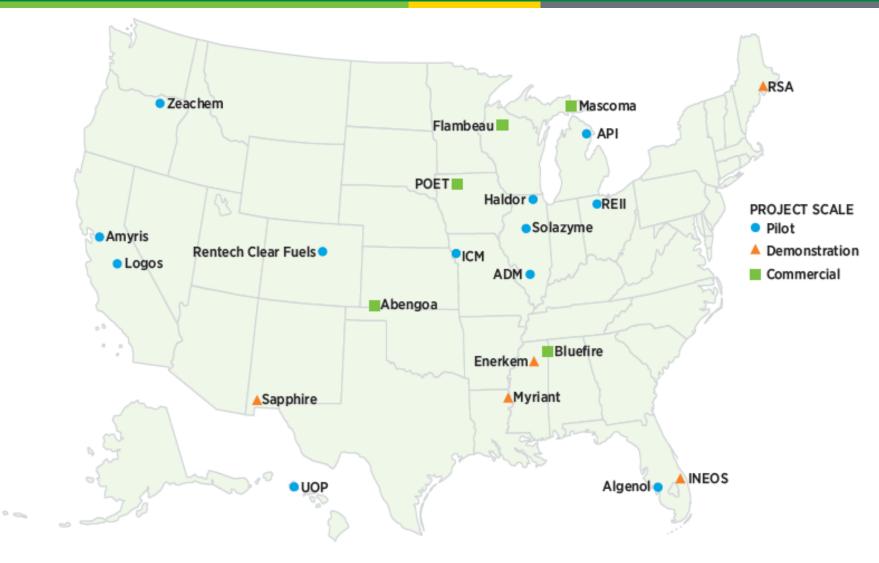



Figure 2.16 | Overview of lignocellulosic biomass, sugar/starch crops and oil plants (feedstocks) and the processing routes to key intermediates, which can be upgraded through various routes to secondary energy carriers, such as liquid and gaseous biofuels. Fuel product examples are (1) oxygenated biofuels to blend with current gasoline and diesel fuels or to use in pure form, such as ethanol, butanols, methanol, liquid ethers, biodiesel, and gaseous DME (dimethyl ether); (2) hydrocarbon biofuels such as Fischer Tropsch (FT) liquids, renewable diesel and some microbial fuels (which are compatible with the current infrastructure of liquid fuels because their chemical composition is similar to that of gasoline, diesel, and jet fuels (see Table 2.15.C)), or the simplest hydrocarbon methane for natural gas replacement (SNG) from gasification or biomethane from anaerobic digestion; and (3) H₂ for future transportation (adapted from Hamelinck and Faaii, 2006 and reproduced with permission from Elsevier B.V.).

Notes: Microbial fuels include hydrocarbons derived from isoprene, the component of natural rubber; a variety of non-fermentative alcohols with three to six carbon atoms including butanols (four carbons); and fatty acids which can be processed as plant oils to hydrocarbons (Rude and Schirmer, 2009).¹ For sugar and starch crops the sugar box indicates six-carbon sugars, while for lignocellulosic biomass this box is more complex and has mixtures of six- and five-carbon sugars, with proportions dependent on the feedstock type. Hardwoods and agricultural residues contain xylan and other polymers of five-carbon sugars in addition to cellulose that yield glucose, a six-carbon sugar.

iocc 👌 👜 🚇


US DOE EERE Porfolio Integrated Biorefineries

cooperation is enabling addressing technology and commercialization barriers. Supply chain component e is an area of concern.

Integrated Biorefinery Projects at Progressive Scales

0

Some Lessons Learned

- Technology development in conjunction with appropriate business models and financing mechanisms from government and private sector in partnership can lead to new and expand existing companies, economic growth, diversify fuels and energy sources, decrease fossil fuel reliance in transport, while caring for the environment.
- Supportive (and constant) policies have been and continue to be essential including for RD&D, support through the Valley of Death of technologies, first-of-a-kind commercialization of replicable projects, and still need to go through the commercialization Valley of Death.
- Sustainability needs to be addressed throughout the stages of development. Impacts across project, region, national and global level and at different times make analyses of impacts difficult. Multiple government organizations and stakeholders are involved.
- Integration of feedstock development, logistics, conversion to products and their use is essential. Many failures and delays resulted from underestimated difficulty of setting the whole supply chain.
- Balancing different markets/volumes/and quality requirements of feedstocks is a challenge and an opportunity for biorefineries.

Some SRREN Key conclusions (I)

- Bioenergy has significant potential to mitigate greenhouse gases if resources are sustainably developed and efficient technologies are applied.
- "For the increased and sustainable use of bioenergy, proper design, implementation and monitoring of sustainability frameworks can minimize negative impacts and maximize benefits with regard to social, economic and environmental issues."

Some SRREN Key conclusions (II)

• The impacts and performance of biomass production and use are region- and site-specific.

Key options examples:

- Sugarcane ethanol production, waste to-energy systems, efficient cookstoves, biomass-based CHP are competitive
- Lignocellulosic based process heat and space heating in the near term partially substitute fossil fuels; biofuels and bioelectricity options, and biorefinery concepts can offer competitive deployment of bioenergy post 2020
- Bio-Carbon Dioxide Capture and Storage can offer negative carbon emissions when technologies are developed.
- New biomaterials are promising but less understood.
- Potential role aquatic biomass (algae) highly uncertain.
- Rapidly changing policy contexts, recent market activity, increasing support for advanced biorefineries & lignocellulosic biofuel options, and in particular the development of sustainability criteria and frameworks, push bioenergy systems and their deployment in sustainable directions.

Contributors

- Ethan Warner, Yimin Zhang, Rich Bain (NREL)
- Michael Wang, Christina Negri et al. (ANL)
- Virginia Dale, Keith Kline, et al. (ORNL)
- Kristen Johnson and Alison Goss Eng (DOE/EERE/BETO)
- Isaias Macedo and Joaquim Seabra (UNICAMP)
- CTBE and ICONE colleagues
- IPCC SRREN Chapter 2 and Annex II contributors
- IEA Bioenergy Agreement Strategic Project: Monitoring Sustainability Certification of Bioenergy Collaborators

Web sites and Resources

- DOE/EERE/Bioenergy Technologies Office http://www1.eere.energy.gov/biomass/pdfs/replacing_barrel_overview.pdf http://www1.eere.energy.gov/biomass/pdfs/replacing_barrel_overview.pdf http://www1.eere.energy.gov/biomass/pdfs/replacing_barrel_overview.pdf http://www1.eere.energy.gov/biomass/technology_pathways.html http://www1.eere.energy.gov/biomass/pdfs/mypp_november_2012.pdf http://www1.eere.energy.gov/bioenergyatlas/ https://www.bioenergykdf.net/
- Chum, H., A. Faaij, J. Moreira, G. Berndes, P. Dhamija, H. Dong, B. Gabrielle, A. Goss Eng, W. Lucht, M. Mapako, O. Masera Cerutti, T. McIntyre, T. Minowa, K. Pingoud, 2011: Bioenergy. In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation [O. Edenhofer, R. Pichs-Madruga, Y. Sokona, K. Seyboth, P. Matschoss, S. Kadner, T. Zwickel, P. Eickemeier, G. Hansen, S. Schlömer, C. von Stechow (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. <u>http://srren.ipcc-wg3.de/</u>

- The Bioenergy Technologies Office (BETO) of DOE/EERE sponsored the work described in the Sustainability Program; Valerie Sariski Reed Director.
- BETO and EERE International Programs sponsored the U.S. and Brazil bilateral work of the MOU on Advanced Biofuels Collaboration. Dan Birns, Rob Sandoli
- Brazilian MCT and MME Adriano Duarte Filho and Ricardo Dornelles.