Global Sustainable Bioenergy: Making it Work

Lee Lynd Thayer School of Engineering, Dartmouth College Global Sustainable Bioenergy Project Mascoma Corporation Bioenergy Science Center

BIOEN-BIOTA-PFPMCG-SCOPE Biofuels & Sustainability Workshop


FAPESP Sao Paulo, Brazil

February 26, 2013

2.5

1.5

I. Very large scale bioenergy: Discretionary or Obligatory?

II. 2nd Gen Processing

III. Land

BIOEN-BIOTA-PFPMCG-SCOPE Joint Workshop on Biofuels & Sustainability 26/02/2013 - FAPESP - São Paulo

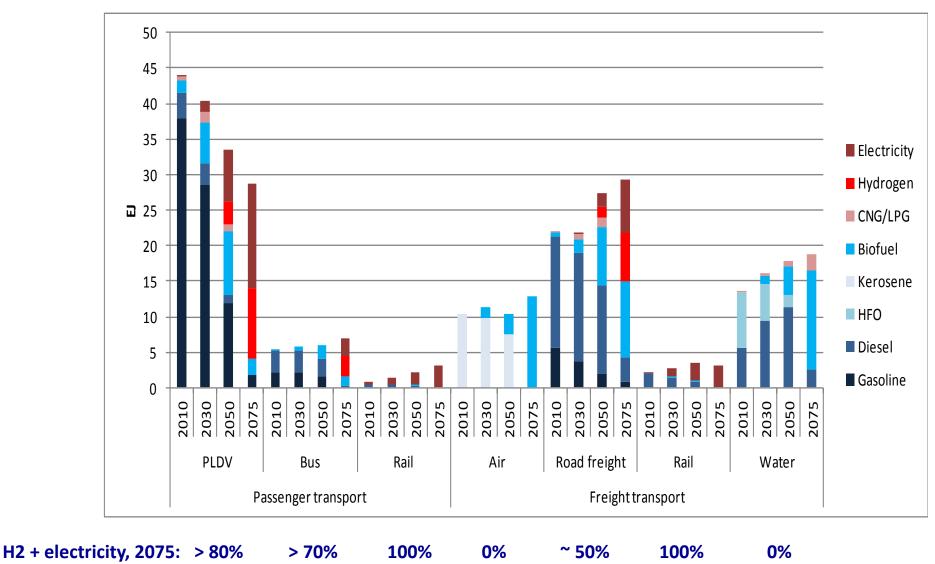
Very Large Scale Bioenergy: Discretionary or Obligatory?

IEA Energy Technology Perspectives June, 2012 http://www.iea.org.etp/

6°C mean global temperature increase (6DS). Business as usual.

4 °C increase (4DS). Assumes adoption of a range of policies currently under consideration by governments worldwide.

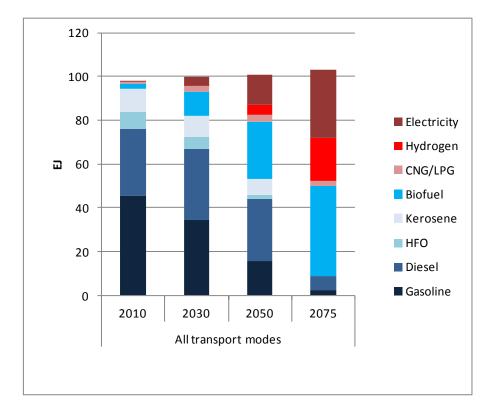
2 °C increase (2DS).


Policies not specified. "Backcast" featuring aggressive, mutually-reinforcing measures:

- Avoid energy use (decrease demand) via increased efficiency
- *Shift* from higher emission to lower emission modes (e.g. public transport, rail)
- Accelerate. Development and deployment of advanced, low-carbon technologies

About as little temperature increase as can be imagined

Very Large Scale Bioenergy: Discretionary or Obligatory?


Transport energy use by mode, vehicle type and fuel type, 2DS (Fulton et al., in prep.)

Non-biofuel renewables used where they are likely to be feasible, biofuels for the rest.

Very Large Scale Bioenergy: Discretionary or Obligatory?

Aggregated transport energy use, 2DS (Fulton et al., in prep.)

Carbon future	Very large scale biofuel use
Unconstrained	Discretionary
Constrained	Likely obligatory Very risky to plan without

Lots of time for non-biofuel renewables to overcome kinetic barriers by 2075. Further penetration faces steep technical hurdles.

Even with aggressive demand reduction, mode shifting, and market penetration by non-biofuel renewables, biofuels provide ~½ of transport energy in 2075

If fossil-derived liquids are used in lieu of biofuels, anticipated temperature increase from transport alone >2 °C

What's Stopping Us?

Concerns about land

2nd Gen Biofuels: Likely Necessary

Land Efficiency (GJ/ha)

- Sugar cane: Adding 2nd gen nearly doubles ethanol/ton
- Perennials > row crops
- Plants optimized for growth > plants optimized for ease of processing (e.g. maximizing sugar, starch, oil)
- Elegant integrated land use scenarios

Unlikely biofuels can provide needed global contribution without 2nd gen

Environment

- Residues \rightarrow low carbon renewable process fuel \rightarrow low ghg emissions
- Can improve soil & water quality

Broad site range

- Land too dry to grow row crops
- Land too cold to grow sugar cane

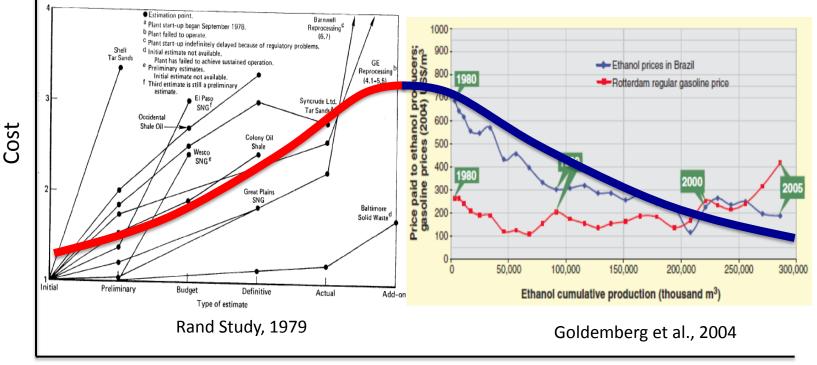
2nd Gen Biofuels: Likely Doable

Cost-Competitive Feedstocks (now)

	(\$/Dry ton)	<u>\$/GJ</u>	Equivalent Oil Price (\$/bbl)
Cellulosic energy crops (e.g. grass)	60 to 80	4 to 5.3	23 to 31
Bagasse (brownfield)	40 to 60	2.6 to 4.0	13 to 19
Bagasse (greenfield with cogen)	~20	1.4	8

Cost-Competitive Processing (reasonable to expect in the future)

	Pretroleum	Cellulosic Biomass
Cost (\$/GJ)	Feedstock (@ \$100/bbl): 18 Processing: <u>6</u> 24	Feedstock (@ \$60/ton): 4 Allowable processing: 20
Processing advantages	Fluid (more physically accessible)	More reactive chemical groups (more chemically accessible)
		Amenability to biotechnology


The Innovation Hump: From Initial Estimate to Nth Plant

Rand Curve

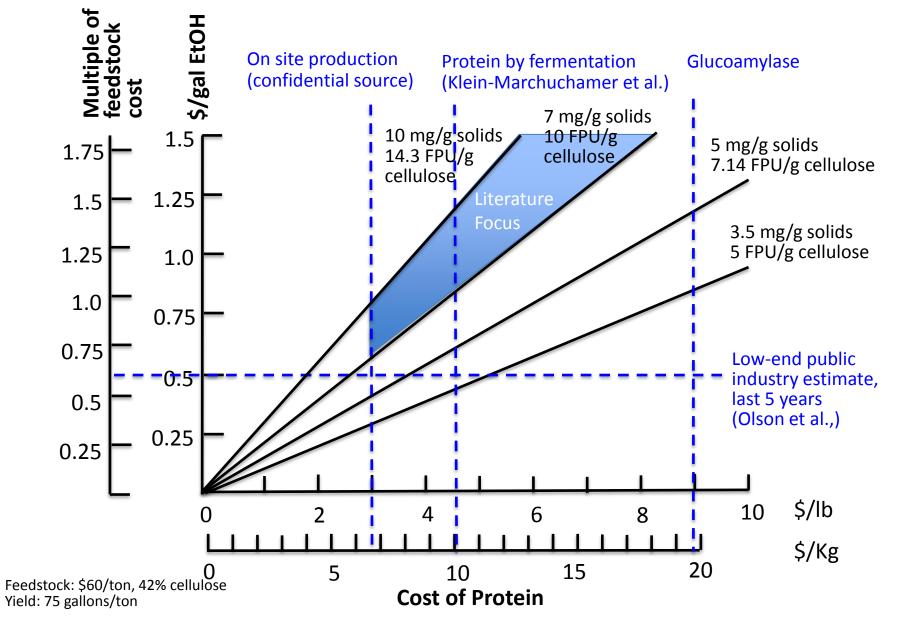
Brazil 1st Gen Ethanol Curve

Estimated cost increases with experience, inversely related to ignorance

Estimated cost decreases with experience

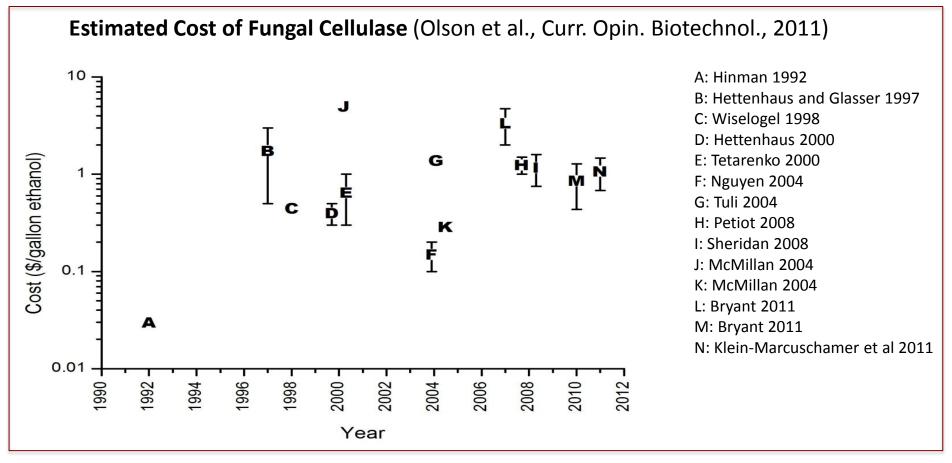
Progress/Experience

The Innovation Hump: From Initial Estimate to Nth Plant


Rand Curve Brazil 1st Gen Ethanol Curve Estimated cost increases with experience, inversely related to ignorance When they were really here Barnwell eprocessing^C 1000 (6,7) Cost underestimated GE Ethanol prices in Brazil Performance overestimated Š Š Reprocessing² 800 (4.1-5.5) Rotterdam regular gasoline price Innovation-light Nowhere close 8 Baltimore Solid Waste Many have claimed to be here 50,000 100.000 150,000 200.000 250.000 300.000 Enabling advances in hand Initial Ethanol cumulative production (thousand m³) Near competitive economics Ready to progress down Goldemberg et al., 2004 experience curve "Nearly there" s/Experience

Needed

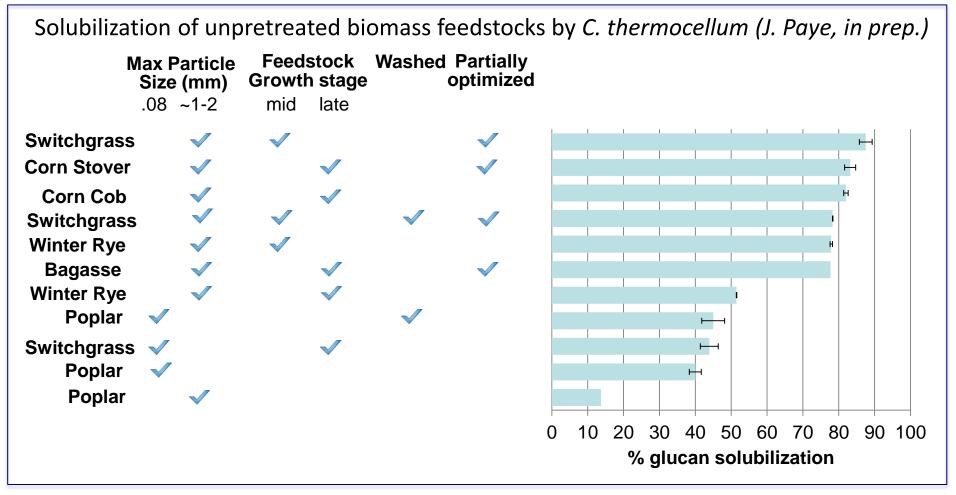
Aggressive innovation: Applied objectives → Targeted understanding, new concepts **Commercial experience** (learn by doing)


Estimated cost decreases with experience

Cost of Added Cellulase

10

Cost of Added Cellulase



After decades of research: Cost of catalyst ~= cost of feedstock

Prohibitive (and unprecedented) for a commodity process

Designs with lower cellulase cost possible, but have cost penalties elsewhere in the process

Less well-studied approaches offer promise (thermochemical too)

- No added enzyme
- No pretreatment
- Controlled but not industrial conditions

What's Stopping Us?

Cost of processing 2nd gen feedstocks – the recalcitrance barrier

Sustainable Solutions

Paths to a sustainable world (all resources, all sectors) entail

Doing things differently than we do them now. It is not reasonable to expect an extrapolated future to be different from the present

A systemic approach. Multiple mutually-reinforcing approaches used to achieve multiple mutually-reinforcing objectives

Increased efficiency along all steps in the supply chain

We need to think about land the way we think about energy

Integrated production (e.g. electricity and heat, ethanol and electricity) Efficiency

Energy & Land Efficiency

Compared to Energy Efficiency, Land-Efficiency has Received Much Less Attention

Energy efficiency

Importance recognized for decades.

THE NEGAWATT REVOLUTION

Amory B. Lovins Using existing technology, says this expert, we can save three fourths of all electricity used today. The Conference Board Magazine XXVII, September 1990

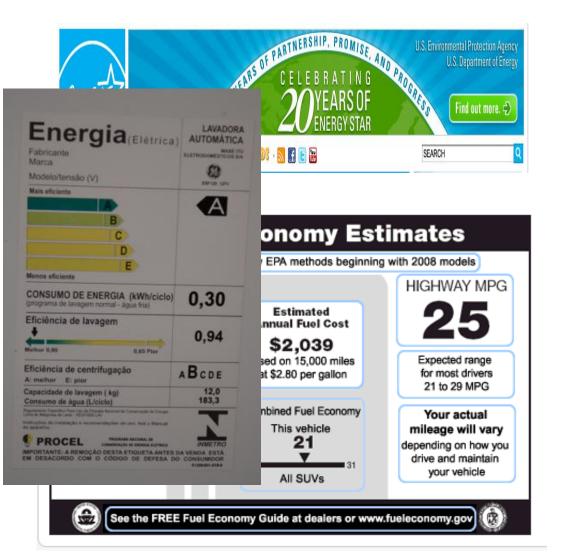
Well-recognized public policy objective.

For immediate release July 29, 2011 President Obama Announces Historic 54.5 mpg Fuel Efficiency Standard.

Public awareness, if not practice, widespread.

Land efficiency

Few countries have policies aimed at promoting land-efficient food production & consumption.


Scant motivation (most of last century)

- Crop prices low
- Main policy challenge: Support farm prices in the face of excess capacity
- This is changing however

Energy & Land Efficiency

Compared to Energy Efficiency, Land-Efficiency has Received Much Less Attention

Energy efficiency – Evident to Consumers

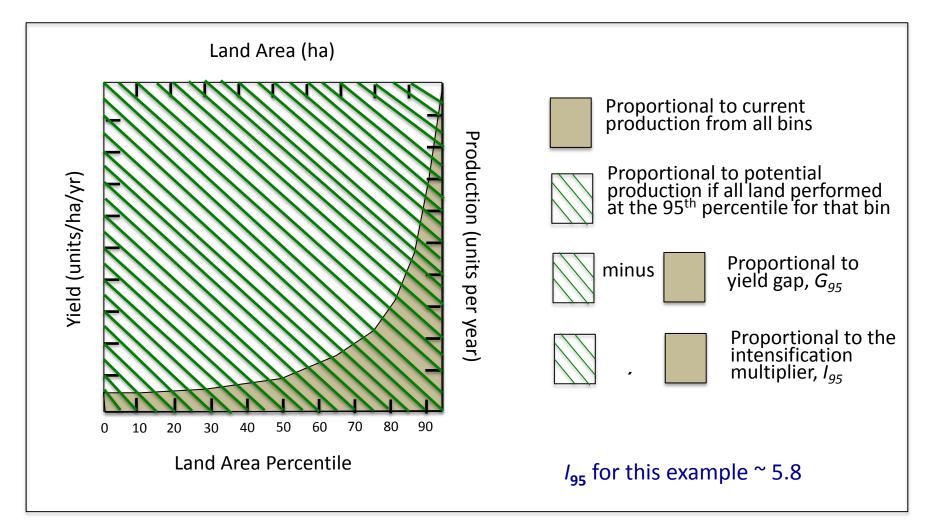
Land efficiency – Not evident

	trition Fa	
	g Size 2 crackers (14 g gs Per Container Abou	
Amount	Per Serving	
	es 60 Calories from	Fat 15
	% Daily	y Value*
Total	Fat 1.5g	2 %
Satu	rated Fat 0g	0%
Tran	s Fat 0g	
Chole	sterol Omg	0%
Sodiu	m 70mg	3%
Total	Carbohydrate 10g	3%
Dieta	ry Fiber Less than 1g	3%
Suga	ırs Og	
Protei	in 2g	
Footp	print	
••••	m ² /calorie:	2.2
7	m ² /serving:	0.132
-	m ² /container:	2.8

Analytical approach well established for row crops (Global Landscapes Initiative, U. Minnesota)

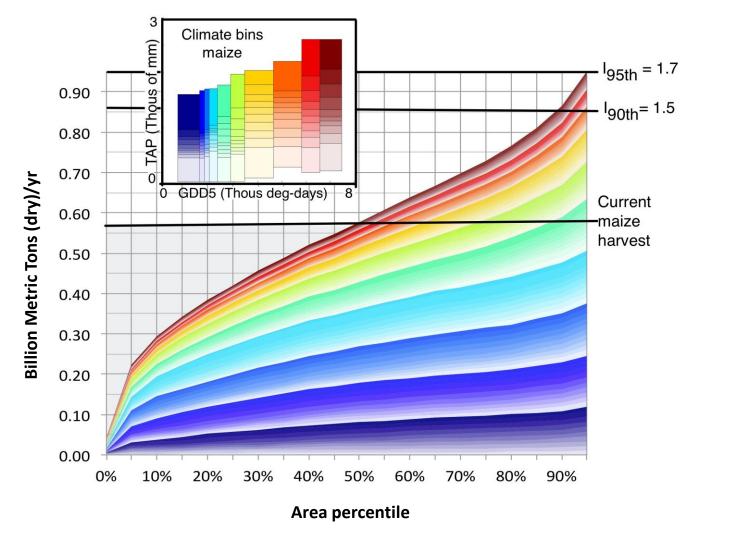
Climate binning

"Bin" land with similar properties (e.g. precipitation, degree days), inventory current production in each bin, order from low to high


Premise: Yields within a bin are attributable to factors other than climate, notably management

Intensification potential

Yield at xth high percentile : Y_x e.g. Y_{90} or Y_{95} Actual yield : Y_A Yield gap : $G_x = Y_x - Y_A$ Intensification potential : $I_x = \frac{Y_x}{Y_A} = \frac{1}{1 - G_x}$


But has not been reported for pasture, livestock

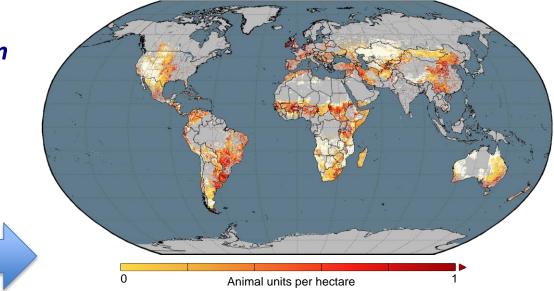
Visualization of Yield Gaps and Intensification Potentials

Informs the question "Is the world full?"

Maize Yield Distribution Plot

Morishige et al., in preparation

GLOBAL LANDSCAPES INITIATIVE INSTITUTE ON THE ENVIRONMENT


UNIVERSITY OF MINNESOTA Driven to Discover™

Aggregate global maize intensification potential: 1.5 to 1.7

Applying the climate binning approach to pasture intensification

FAO Gridded Livestock (2007)

Ramunkutty et al. "M3" Land Classification (2008)

A. Geospatial distribution of livestock on pastureland

<u>< 3 Animal Units (AU)/ha filter</u> (cattle, sheep, and goats)

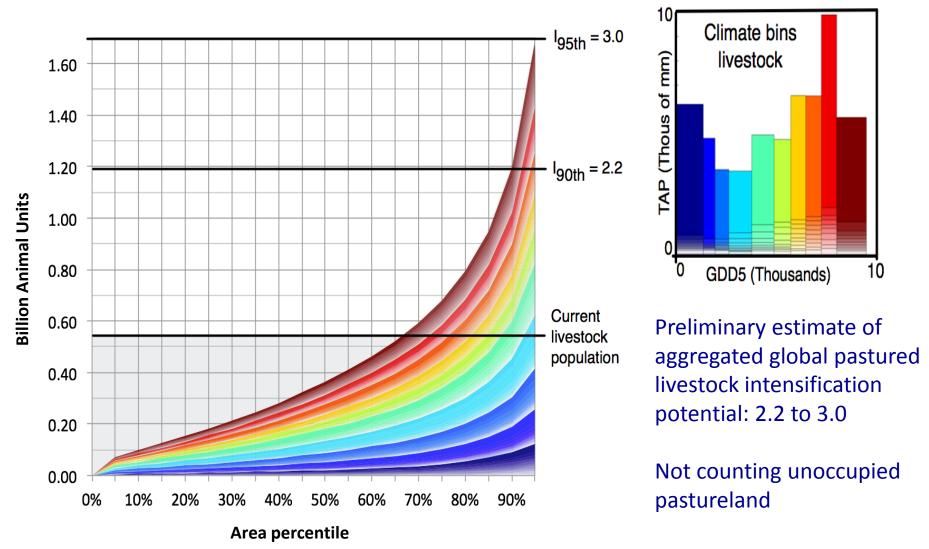
Binned Pasture Data

Livestock Population

Stocking Density of Occupied Pasture

Fraction Pastureland Occupied by Animals

P10	8.12	17.1	13.0	12.0	12.0	12.0	7.75	7.52	6.11	8.17	C).52	0.86	0.61	0.55	0.55	0.60	0.43	0.45	0.37	0.40	0.60	0.77	0.82	0.85	0.85	0.77	0.70	0.65	0.64	0.78
P09	4.83	6.13	10.1	15.1	12.8	5.53	6.67	11.0	6.49	8.45	C).27	0.38	0.44	0.66	0.56	0.47	0.45	0.56	0.35	0.40	0.70	0.62	0.89	0.90	0.89	0.45	0.57	0.76	0.72	0.82
P08	4.34	5.55	8.44	12.7	9.93	5.50	7.14	8.10	6.75	10.4	C).26	0.33	0.37	0.56	0.43	0.26	0.50	0.49	0.33	0.48	0.66	0.65	0.86	0.88	0.89	0.83	0.55	0.64	0.80	0.85
P07	3.88	3.67	6.50	8.66	8.57	5.49	4.69	5.39	6.06	11.1	C).28	0.26	0.32	0.43	0.38	0.26	0.36	0.39	0.32	0.49	0.54	0.54	0.80	0.78	0.88	0.83	0.50	0.54	0.74	0.89
P06	3.64	2.56	4.30	5.48	6.73	4.07	4.97	4.87	5.21	10.6	C).29	0.23	0.29	0.31	0.32	0.19	0.31	0.33	0.33	0.46	0.50	0.44	0.57	0.68	0.81	0.84	0.62	0.57	0.61	0.90
P05	3.11	1.99	2.04	4.22	4.96	2.31	4.16	5.97	5.56	9.75	C).24	0.21	0.25	0.25	0.27	0.14	0.24	0.34	0.46	0.42	0.49	0.36	0.32	0.65	0.72	0.65	0.66	0.68	0.47	0.89
P04	2.87	1.70	1.85	3.45	3.69	2.26	2.99	5.58	7.01	8.17	C).21	0.19	0.27	0.25	0.26	0.14	0.20	0.32	0.48	0.40	0.54	0.35	0.26	0.54	0.56	0.64	0.59	0.67	0.56	0.80
P03	2.97	2.04	1.98	1.68	3.19	1.65	1.97	3.13	6.79	5.89	C).19	0.19	0.34	0.18	0.22	0.14	0.15	0.21	0.45	0.31	0.59	0.41	0.23	0.34	0.57	0.47	0.49	0.57	0.59	0.73
P02	2.26	2.08	2.35	0.90	4.13	1.87	1.22	1.59	2.63	3.12	C).15	0.14	0.26	0.16	0.27	0.16	0.27	0.23	0.26	0.20	0.60	0.56	0.35	0.23	0.59	0.45	0.18	0.27	0.39	0.61
P01	2.82	2.39	2.56	3.07	1.69	1.17	1.54	2.12	2.98	1.58	C).17	0.15	0.27	0.36	0.21	0.17	0.21	0.27	0.29	0.19	0.64	0.61	0.37	0.34	0.31	0.27	0.28	0.31	0.40	0.33
I	T01	T02	T03	T04	T05	T06	T07	T08	T09	T10	-	T01	T02	T03	T04	T05	T06	T07	T08	T09	T10	T01	T02	T03	T04	T05	T06	T07	T08	T09	T10


Global total: 543×10^6 AU

Global average: 0.35 AU/ha

60 % occupied 40 % not occupied

Morishige et al., in preparation

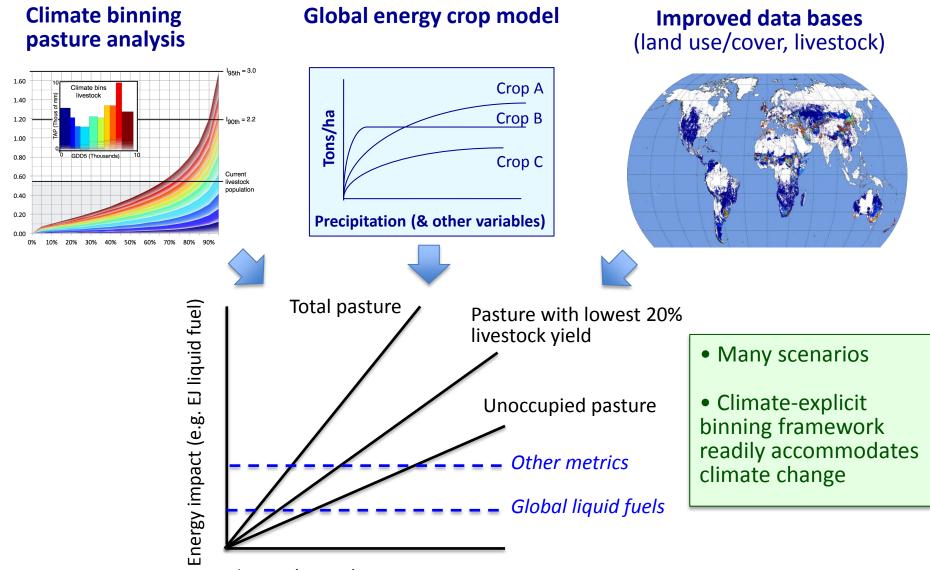
Pasture Stocking Distribution Plot

	Global Area (10 ⁹ ha)	% Food Calories (US) ¹	Key Constraints	Intensification Potential							
Cropland	1.5	>98	Food security	Significant but much or all needed for food							
Forestland	3.9		Habitat Stored carbon	Plantations: Yes Unmanaged forests: No							
Pastureland	3.4	<2	Much less evident	Preliminary analysis: Large							
¹ Land areas from unhttp://faostat.fao.org/site/377/default.aspx#ancor. ² Davis et al., in preparation;											

Opportunities for graceful integration of bioenergy production into cropland agriculture and forestry exist, should be pursued in cases where key constraints can be honored, and can offer a distinctive set of benefits.

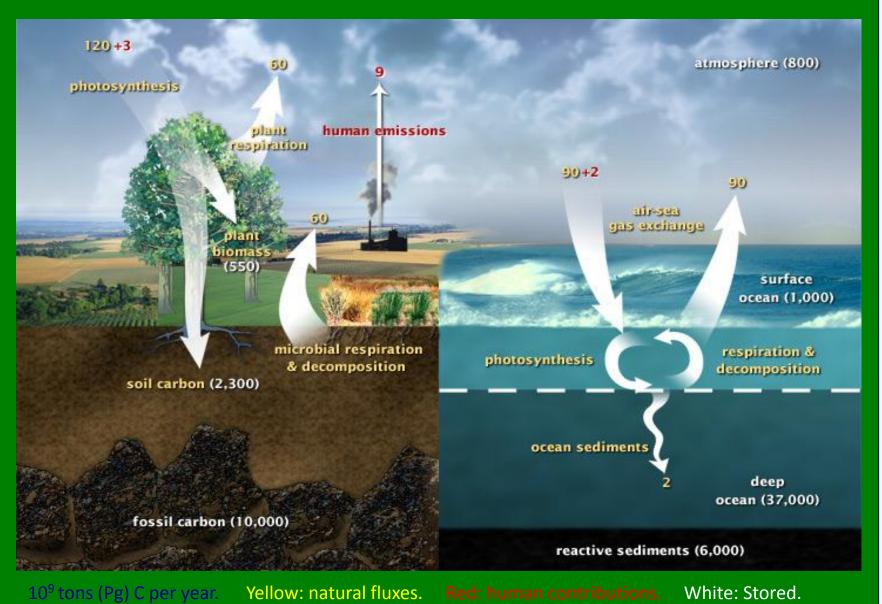
Graceful integration opportunities also exist for pasture – e.g. mixed crop/pasture systems

	Global Area (10 ⁹ ha)	% Food Calories (US) ¹	Key Constraints	Intensification Potential							
Cropland	1.5	>98	Food security	Significant but much or all needed for food							
Forestland	3.9		Habitat Stored carbon	Plantations: Yes Unmanaged forests: No							
Pastureland	3.4	<2	Much less evident	Preliminary analysis: Large							
¹ Land areas from unhttp://faostat.fao.org/site/377/default.aspx#ancor. ² Davis et al., in preparation;											

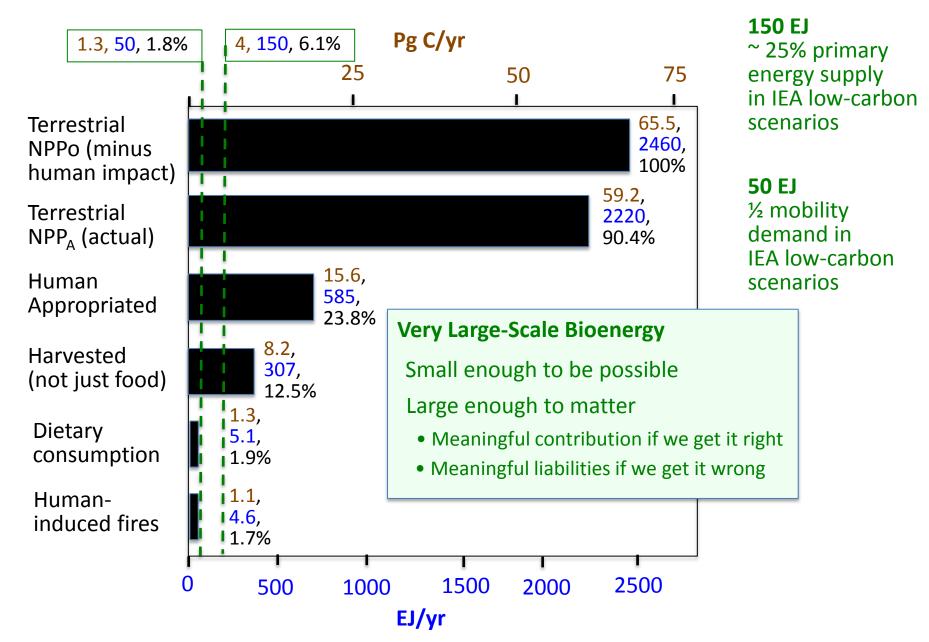

Pastureland appears to be a particularly promising source of bioenergy feedstocks

- Large land base
- Less evident constraints, potential competing priorities
- Likely larger intensification potential (remains to be confirmed)

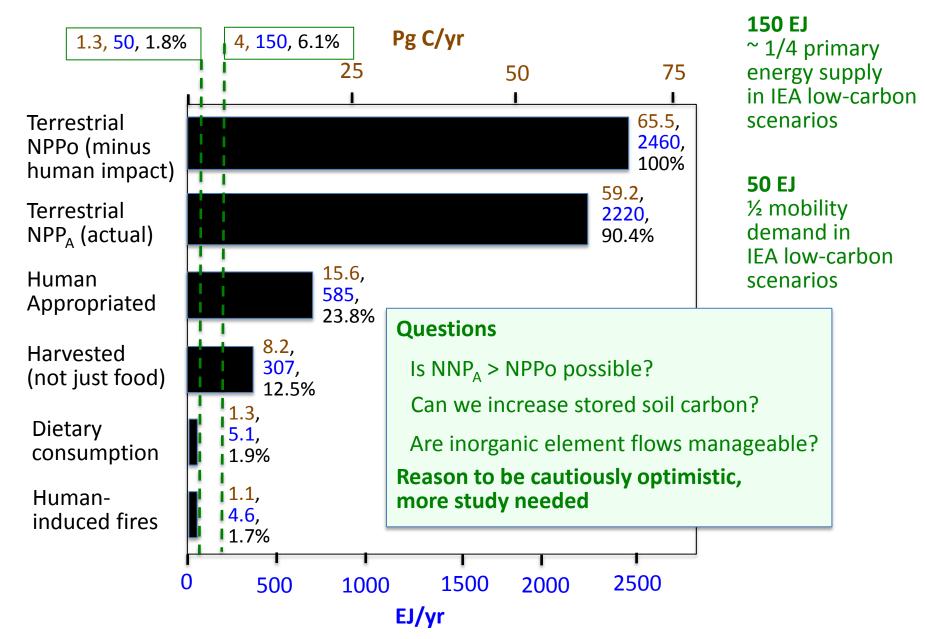
There are however large outstanding uncertainties. Land use and land cover data is limited generally, and this is particularly the case for pasture


High priority area for further study

Future path of GSB pasture analysis (illustrative)


[%] Area devoted to energy crops

The Carbon Cycle


http://earthobservatory.nasa.gov/Features/CarbonCycle/

Bioenergy in the Context of Biogeochemical Carbon & Energy Flows

From Haberl et al. 2007. PNAS 104:12942-12947, except dietary data from Vitousek et al. 1986. Bioscience 36: 368-373, updated for a population of 7 billion. IEA scenarios: Blue Map, ETP 2010; 2DS, ETP 2012; Personal communication, Lew Fulton.

Bioenergy in the Context of Biogeochemical Carbon & Energy Flows

From Haberl et al. 2007. PNAS 104:12942-12947, except dietary data from Vitousek et al. 1986. Bioscience 36: 368-373, updated for 7 a population of 7 billion. IEA scenarios: Blue Map, ETP 2010; 2DS, ETP 2012; Personal communication, Lew Fulton.

Global Sustainable Bioenergy (GSB) Project

(http://bioenfapesp.org/gsb/)

Global Sustainable Bioenergy

Focus	Model Deve	-		Socioeco	onomic	Environ	mental	Integrated Analyses & Scenarios		
	Livestock Energ Productivity Crop				Social Welfare & Economic	Soil Fertility	Water & GHG	Making Room for	Multiple benefits	
					Development			Biofuels		
Global										
Local,										
"LACAf"*										
Countries										
*Latin Ame	rica, Caribbea	n, and Af	rica							

Acknowledgements

Discretionary or Obligatory Analysis: Lew Fulton, Nathanael Greene, Alex Koerner, Mark Laser, Luke Tonachel

Thermophilic conversion: Julie Paye and the Lynd lab at Dartmouth

Pasture analysis & related: John Sheehan, Ashley Morishige, Nathan Mueller, Jamie Gerber, Jon Foley, Jansle Rocha, Geraldo Martha, Luis Cortez, Andre Nassar

GSB project: Board members Brito Cruz, Martin Keller, Luuk van der Weilen. And many others