Workshop on Impacts of Global Climate Change on Agriculture and Livestock May 27th - 2014

C4 Crop Responses to Global Climate Change

Carl Bernacchi

Global Change and Photosynthesis Research Unit USDA-ARS, Urbana, IL

Department of Plant Biology University of Illinois USDA

Acknowledgements

<u>Bernacchi Lab</u>

- Ursula Ruiz Vera
- David Drag

<u>Don Ort</u>

- David Rosenthal
- Matt Siebers

Funding Agencies

- USDA-ARS
- Department of Energy

Coauthors

- Sharon Gray
- Steve Long
- Andrew Leakey
- Lisa Ainsowrth
- Stephen Long

Historic CO₂

Historic CO₂

Modeled vs. Measured

Main periods of use: SA90 (1990–1992, not shown), IS92 (1992–2000), SRES (2000–2012), RCPs (2012+) Source: Peters et al. 2012a; CDIAC Data; Global Carbon Project 2013

Elevated CO₂: Primary effect on C3 plants

Elevated CO₂: Primary effect on C4 plants

C3 vs. C4 crops and elevated CO₂

Leakey et al., 2009

Meta-analysis results

Long et al., 2004, Annu Rev Plant Biol 55: 591-628

SoyFACE Global Change Research Facility Investigating crop responses to elevated CO₂

Maize: Photosynthesis

Leakey et al., 2006

Maize yields

Table III. Biomass of stover and grain, kernel number, individual kernel weight, total leaf area, and DOY of anthesis and silking for maize grown at ambient (370 μ mol mol⁻¹) or elevated [CO₂] (550 μ mol mol⁻¹) upon harvest at the end of the growing season in 2004 at SoyFACE in Urbana, IL

Parameter	[CO ₂] 370	[CO ₂] 550	Р
Stover biomass R6 (g plant ⁻¹)	134 ± 11	131 ± 9	0.68
Grain biomass R6 (g plant ⁻¹)	140 ± 6	142 ± 6	0.8
Kernel number ($plant^{-1}$)	598 ± 38	609 ± 29	0.37
Kernel weight (mg)	248 ± 7	247 ± 5	0.83
Total leaf area (cm ² plant ⁻¹)	$6,280 \pm 471$	$6,304 \pm 365$	0.48
Anthesis date	188.9 ± 0.3	188.7 ± 0.2	0.53
Silking date	188.3 ± 0.3	188.1 ± 0.3	0.63

Sorghum FACE Experiment

Ottman et al., 1999

Drought increased yield in elevated CO₂

Research

Elevated CO₂ increases sorghum biomass under drought conditions

M. J. Ottman¹, B. A. Kimball², P. J. Pinter², G. W. Wall², R. L. Vanderlip³, S. W. Leavitt⁴, R. L. LaMorte², A. D. Matthias⁵ and T. J. Brooks²

¹Plant Sciences Department, 303 Forbes Bldg., University of Arizona, Tucson, AZ 85721 USA; ²U.S. Water Conservation Lab, USDA-ARS, 4331 E. Broadway Rd., Phoenix, AZ 85040 USA; ³Department of Agronomy, 3724 Throckmorton Hall, Kansas State University, Manhattan, KS 66506 USA; ⁴Laboratory of Tree Ring Research, 218 West Stadium, University of Arizona, Tucson, AZ 85721 USA; ⁵Department of Soil, Water, and Environmental Science, 529 Shantz Bldg., University of Arizona, Tucson, AZ 85721 USA

Maize Photosynthetic Responses to elevated CO₂

Integrated daily carbon uptake

Leakey et al., 2004

Maize Photosynthesis

Markelz et al., (2011) J Exp Bot 62: 3235-3246

Stomatal conductance and elevated CO₂

- Universally, stomatal conductance is lower in elevated CO_2
- Do these decreases in leaf stomatal conductance translate to decreases in canopy water use?

Evapotranspiration

Water moves from the soil into the roots, through the plant, is transpired from the leaves, and enters the atmosphere (Transpiration), or it evaporates from surfaces (Evaporation)

> In intercontinental regions, a majority of atmospheric humidity can come directly from the evopotranspired water, which can falls as precipitation

Canopy Temperatures: Maize

Elevated CO₂ and water use

Soybean

Maize

Bernacchi et al., 2007

Hussein et al., 2013

Linkages between g_s and ET

Shimono et al., (2013) GCB 19, 2444-2453

Leakey et al., 2009

Global Temperatures are linked to CO₂

Graphic: Michael Ernst, The Woods Hole Research Center

T-FACE: Understanding crop responses to temperature

Maize Photosynthesis

Photosynthetic Acclimation

Maize: Biomass and Yield

Adapting Crops to Atmospheric Change

Summary: CO₂ and temperature

- Elevated CO₂
 - No impact on maize yield
 - Decreases water use of major crops
- Higher Temperatures
 - Reduce maize yields
 - CO2 does not "protect" against yield losses from temperature
- Improvements to Photosynthesis
 - Yields decline with temperature and do not increase as much as theoretically possible with rising CO₂
 - We are beginning to understand the physiology behind the responses and identify the opportunities to maximize yields