Challenges for Research

CLIMATE IMPACTS ON AGRICULTURE

Workshop on Impacts of Global Climate Change on Agriculture and Livestock May 27th - 2014

Contact Information

Jerry L. Hatfield Laboratory Director National Laboratory for Agriculture and the Environment Director, Midwest Climate Hub 2110 University Blvd Ames, Iowa 50011 515-294-5723 515-294-8125 (fax) jerry.hatfield@ars.usda.gov

Framework For Agronomic Systems

Climate Factors

Inputs

- Temperature
- Precipitation
- Solar radiation
- Carbon dioxide

<u>Direct</u>
Growth
Phenology
Yield

Indirect Insects Diseases Weeds

Soil is the underlying factor as a resource for nutrients and water

Climate vs Weather

- Climate determines where we grow a crop
- Weather determines how much we produce

Maize Yields

Wheat Yields

Projections

"Assuming no change in population growth, food consumption patterns and food waste management, the following production increases must take place by 2050: cereals production must increase by 940 million tonnes to reach 3 billion tonnes; (45% increase) meat production must increase by 196 million tonnes to reach 455 million tonnes; (77% increase) and oilcrops by must increase by 133 million tonnes to reach 282 million tonnes (89% increase) (Alexabdratos and Bruinsma, 2012).

It is also estimated that global demand for crop calories will increase by 100 percent ± 11 percent and global demand for crop protein will increase by 110 percent ± 7 percent from 2005 to 2050 (Tilman et al. 2011). "

Alexandratos N, Bruinsma J. 2012. World agriculture towards 2030/2050, the 2012 revision. *ESA Working Paper No. 12-03, June 2012*. Rome: Food and Agriculture Organization of the United Nations (FAO). (Available from <u>http://www.fao.org/docrep/016/ap106e/ap106e.pdf</u>)

Tilman D, Balzer C, Hill J, Befort BL. 2011. Global food demand and the sustainable intensification of agriculture. *PNAS* 108(50):20260–20264. Washington DC: Proceedings of the National Academy of Sciences of the United States of America. (Available from http://www.pnas.org/content/108/50/20260)

World Soybean Production

By 2050, we will have a 1066 kg/ha deficit in production compared to projected requirements

Corn Grain Production

By 2050, we have a 125 kg/ha deficit on expected production compared to required production

Wheat Grain Production

By 2050, we have a 627.2 kg/ha excess in production estimates compared to projected requirements

Brazil Wheat

Brazil Soybean

Climate Factors

Inputs

- Temperature
- Precipitation
- Solar radiation
- Carbon dioxide

<u>Direct</u>
Growth
Phenology
Yield

Indirect Insects Diseases Weeds

Soil is the underlying factor as a resource for nutrients and water

Carbon Dioxide Increases

Present vs. Past

A CONTRACTOR OF THE OWNER

Percent increase in total biomass at 54 DAS

L. Ziska, USDA-ARS

Present vs. Future

100 100 100

Percent increase in total biomass at 54 DAS

L. Ziska, USDA-ARS

Carbon Dioxide-Water Interactions

Two levels of CO₂ and three soil water levels on soybean

42 DAP

47 DAP

CO₂ and Temperature Interactions

 CO_2 and temperature effects offset each other in a well-watered situation; however, in water limited the positive effect of CO_2 is dominant

Temperature Responses

Difference in temperature response between the vegetative and reproductive stage of development for crops. The higher the temperature the faster the rate of development

Temperature

Crop	Optimum Temp (C)		Temp Range (C)		Failure Temp
Сгор	Veg	Reprod	Veg	Reprod	(C)
Maize	34		18-32	18-22	35
Soybean	30	26	25-37	22-24	39
Wheat	26	26	20-30	15	34
Rice	36	33	33	23-26	35-36
Cotton	37	30	34	25-26	35
Tomato	22	22		22-25	30

Nighttime Temperatures

Impact of Warm Nights on Corn and Soybean Productivity

Temperature effects on Corn Phenology

Rhizotron study with warm chamber 4C warmer than normal chamber with simulation of Ames IA temperature patterns.

Rhizotron Results

Current Reductions in Yields

Lobell et al. 2011 Science 333:616-620

Current Mega-climate regimes

Future (2050) megaclimate regimes

Move from a favorable to unfavorable climate for wheat

Ortiz et al. Agric Ecosys & Environ. 2008. 126:46-58

Temperature Effects on Evaporation

$$ET = \frac{\rho c_p (T_0 - T_s)}{r_a} + \frac{\rho c_p [e_s(T_0) - e_a]}{\gamma (1 + \frac{r_s}{r_a})r_a}$$

Global Models Disagree on CO2 (Climate) Effect on ET

Soil Water Use Rates

Crop Yield Variation

Precipitation

- Expect increased variation among years
- Expect increased variation within a year
- Expect increase in intensity of storms and decreased frequency of storms

Soil Water Availability

Hudson, 1994

Variation in Yields

20% of the yield loss occurs 80% of the time due to water availability

The majority of the yield losses due to the weather are short-term stresses

Soybean yields across the Midwest

Maize County Yields

Implications

- Climate will definitely impact crops both directly and indirectly
- Soil management to increase water holding capacity and reduce E from ET will be a critical climate resilient factor
- Quantify the indirect effects due to insects, diseases, and weeds
- Quantify the effects of climate change on nutritional quality of grain, forage, and produce
- We need to approach climate resilience and adaptation strategies as a G x E x M problem