

... for a brighter future

Carbon Cycle. Impacts of Agriculture: Emphasis on changes in soil

Workshop on Impacts of Global Climate Change on Agriculture and Livestock May 27th - 2014

U.S. Department of Energy

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC **Roser Matamala**

Biosciences Division, ANL, IL, USA

Team:

David Cook, Julie Jastrow, Zhaosheng Fan, Sarah O'Brien, Students and Postdocs

Soil formation and loss

<u>Geological rates:</u> soil formation: 0.036-0.083 mm y⁻¹ soil erosion: 0.015-0.025 mm y⁻¹ <u>Forms 2-4 x faster than lost</u>

<u>Conventional agriculture:</u> lost at ~ 4 mm y⁻¹ Lost 50-100 x faster than forms

Global Carbon Cycle

Changes in land cover has caused biodiversity loss, changes in ecosystem structure and function, loss of stored C, fragmentation.....

The possibilities

Midwest land transformation: a case study at Fermilab

Images from Bigstock web page

Grassland restoration process periodical burns

Crop land

Tallgrass prairie

Study sites: Fermi prairie, Fermi ag.

i) corn/soybean rotation, conservation tillage

ii) restored prairie, biennial burns

Eddy Covariance method to measure net ecosystem exchange (NEE), meteorological and soil measurements

Ecosystem fluxes: Eddy Covariance Method

Drawing by George Burba

- The principle for eddy flux measurement is to measure how many molecules are moving upward and downward over time, and how fast they travel,
- Mathematically such vertical flux can be represented as a covariance between measurements of vertical velocity, the upward and downward movements, and the concentration of the H₂O and CO₂,
- ➢ Provides net ecosystem exchange of water, heat and CO₂ fluxes using the eddy flux theory where $F \approx \overline{\rho_a} w' s'$

Baldocchi,DD. Global Change Biol. (2003); Burba, G., (2013). Eddy Covariance Method for Scientific, Industrial, Agricultural, and Regulatory Applications. LI-COR Biosciences, Lincoln, USA.

Ecosystem Evapotranspiration = Evaporation + Transpiration

- > Annual and growing season ET were the same for all vegetation,
- ET consumed about 62% of the available energy during the growing season and 48% after,
- > Precipitation/ET ratios ranged 0.88 1.63 for crops and 0.94 1.70 for the prairie.

- Carbon losses are very high for crop fields,
- > Maize has much higher summer NEE,
- > Large differences in phenology.

Number of days when NEE is negative

The C uptake period, phenology, is one of the most important factors in sustaining C gains

GPP and NEP was estimated from $\mathbf{NEE} = \mathbf{P}_{gross} - \mathbf{R}_{eco}$ $\mathbf{P}_{gross} = \frac{\mathbf{A}_{max}Q}{Q + \mathbf{K}_m} f(T_a) f(T_s) f(VPD) f_P(SWC)$ $\mathbf{R}_{eco} = \mathbf{R}_{ref} e^{\frac{E_0}{T_s + 273.15 - T_0}} f_R(SWC)$

		Maize-Soy		Prairie	
		Pgross	R _{eco}	Pgross	R _{eco}
	2006M	1394	1065	1249	1064
	2007S	1346	1505	1450	959
	2008M	1400	940	1257	960
	2009S	744	998	1373	1039
	2010M	1555	1651	1450	1487
	2011S	1016	1150	1452	1180
	2012M	1427	1161	1400	1107
	Mean M	1444 ± 38	1204 ± 156		
	Mean S	1035 ± 174	1218 ± 150		
	Mean M&S	1268 ± 108	1210 ± 101	1376 ± 34	1114 ± 69
$GPP = P_{gross} + R_{eco}$	GPP	2479 ± 179		2490 ± 90	

Net Ecosystem Production for Prairie and Crops

Chronosequence studies: What pools are changing?

Restoration Date	Age (y)	Soil BD (g cm ⁻³)
Rest. 1975	38	1.17
Rest. 1977	36	1.11
Rest. 1978	35	1.16
Rest. 1981	32	1.18
Rest. 1984	29	1.22
Rest. 1990	23	1.25
Rest. 1992	21	1.21
Rest. 1993	20	1.21
Rest. 1997	16	1.24
Ag. Corn/Soy	0	1.29
Remnant	>200	0.88

What pools are changing?

SOC accumulations represent 10% to 14% of NEP

What pools are changing?

Matamala et al. 2008. Ecol. Appl. 18:1470-1488.

Mechanisms of Soil Organic Matter Stabilization

NATIONAL LABORATORY

Modified from Jastrow and Miller, 1998, In Soil Processes and the Carbon Cycle, CRC Press.

detrital C cycling

- Decomposing POM becomes encrusted with organomineral particles
- Microaggregates form & stabilize within macroaggregates
- Transformation of inputs and deposition of decomposer residues creates organomineral associations
- Silt-sized aggregates can similarly form within microaggregates
- Fractions recycle when higher order aggregates destabilize

Microaggregates ~ 50-250 μm

- Particulate organic matter colonized by saprophytic fungi
- Silt-sized aggregates with microbially derived organomineral associations
- Plant and fungal debris
- Fungal or microbial metabolites
- Biochemically recalcitrant organic matter
- Clay microstructures

Sensu Golchin et al. 1994, Aust. J. Soil Res. 32:1043-1068

Jastrow & Miller, 1998, In Soil Processes and the Carbon Cycle, CRC Press. Jastrow et al., 2007, Climatic Change 80:5-23.

Changes in aggregation and organic carbon in prairie soil

Jastrow 1996. Soil Biol. Biochem. 28:665-676.

Soil aggregates and the buildup and stabilization of soil carbon

- Most C accrued in macroaggregates, especially microaggregates stabilized within macroaggregates
- Silt-C in microaggregates within macroaggregates contributed greatest amount of C to whole soil
- Yet silt-C pool reached steady state at only 59% of its amount in remnant prairie soil (concentrations increasing)
- Other C pools already near that of remnant or still increasing linearly

TIONAL LABORATORY

O'Brien, SL, and JD Jastrow. 2013. Soil Biology and Biochemistry 61:1-13.

Phased multi-steady-state hypothesis for carbon accrual in SOM pools

Change in realized inputs to a given SOM pool, e.g.

- Time for plant-derived inputs to be rendered small enough to be included in pool
- Change in deposition of microbial residues
- Transformations in SOM chemistry promote binding to mineral surfaces
- Rearrangement of mineral and organic structures and pore-filling

O'Brien, SL, and JD Jastrow. 2013. *Soil Biology and Biochemistry* 61:1-13.

Soil drivers: rhizosphere and microbial development

Are these universal mechanisms?

Climate change effects....

Different capacities

Six et al., 2002. Agronomie , 22:755-775.

Soil structure, C, and nutrients in tropical soils

Fonte et al., 2014. Soil Biology & Biochemistry, 68:150-157

Soil as an ecosystem service:

- 1) water and nutrients for plant growth = Primary Production
- 2) regulation of the water cycle,
- 3) carbon storage

Soil as an ecosystem service:

1) water and nutrients for plant growth = Primary Production

- 2) regulation of the water cycle,
- 3) carbon storage

Climate change will affect these services, largest on: Food production, plants Hydrology & C-cycle

