Brazil-EU Workshop: Coordinated Call on Advanced Biofuels

Applied Research to Biomass Production, Logistics, and Feedstock Diversification

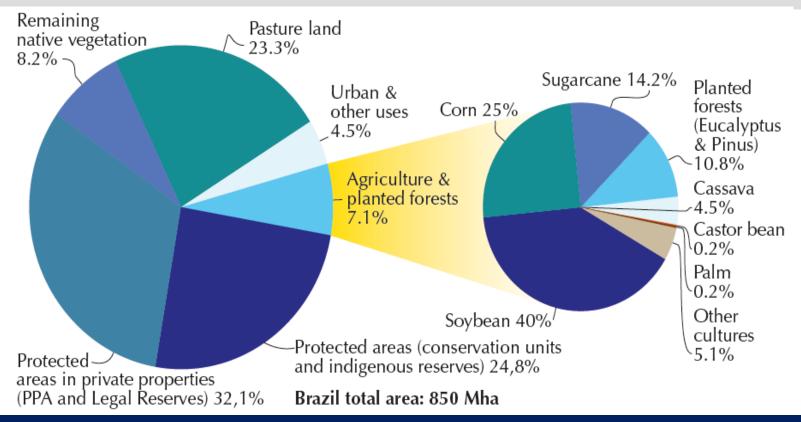
Heitor Cantarella
FAPESP: BIOEN Program &
Agronomic Institute of Campinas (IAC)

Recent studies on feedstock for sustainable bioenergy

Summarizing

- Brazil has excellent conditions to produce biomass for bioenergy
- Most favorable feedstock:
 - > Sugar crops: sugarcane
 - > Oil crops: soybean
 - > Cellulose crops: eucalyptus
- > Gaps and Barriers discussed:
 - Costs, production technologies, logistics, environmental & social impacts

Cantarella et al, (2015) Environmental Development



Brazil-EU WS: Biomass Production & Diversification (Cantarella 20151208)

FOR RRA7II

with agriculture and planted forests

Planted areas (Mha): soybean 27; corn 15, Sugarcane 8.5; Eucalyptus+Pinus 6.5

Brazil: energy balance and GHG savings

Feedstock	Planted area	Fresh mass yield	Energy balance	GHG	
				Emission	Saving
	1000 ha	t ha ⁻¹ yr ⁻¹	MJ MJ ⁻¹ Exported	g CO ₂ eq MJ ⁻¹	% Reduction
Sugarcane Corn Cassava Soybeans Peanut Castor bean Palm Eucalyptus (m³)	8521 15,018 2673 24,088 99 119 109 4874	84 4.8 38 3.1 4.2 1.5 22 40 ^a	8.3 - 2.7 4.5 - - 8.7	24 37-43 45 50-58 - - 32-37 17-22	71% 56-49% 46% 40-31% - - 62-56% 80-74%
Elephant grass	-	25 ^b	7.7	15	82%

Cantarella et al, 2015

Energy content of the sugarcane plant

1 t stalk = 1.2 barrels of oil

Sugar

□ Sugar → Ethanol

Bagasse (Cellulose)

□ Bagasse → vapor and electricity (1/2 Itaipu)

Dry leaves & tops (Cellulose)

 □ Leaves and tops → collect for energy or leave on the field

Sugarcane harvest residues

8-20 t of harvest material remain in the

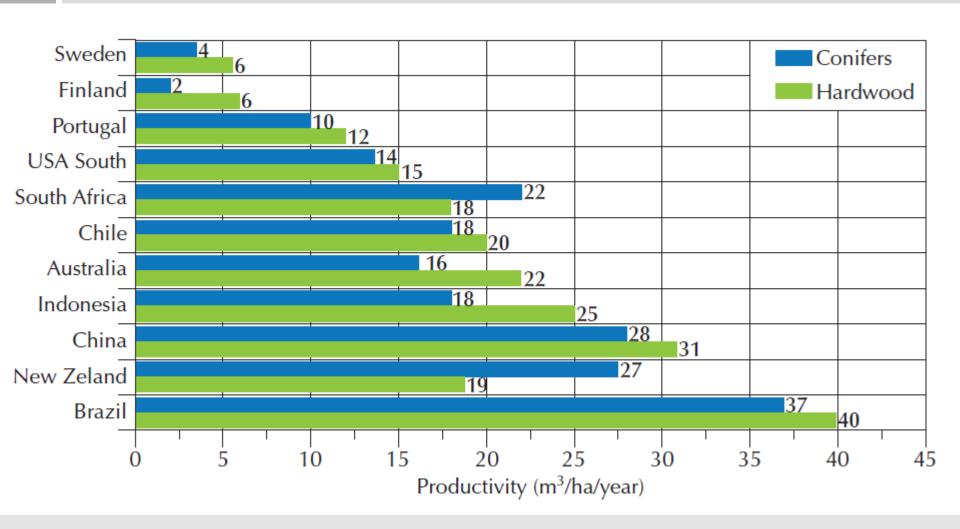
Sugarcane harvest residues

How much sugarcane trash should be left on the soil?

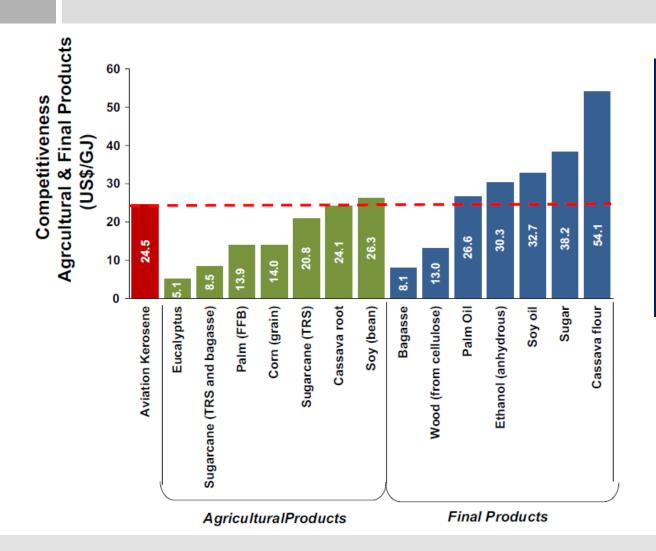
Special number of Scientia Agricola 2013, **70(5)**

http://www.scielo.br/scielo.php?script=sci_serial&pid=0103-9016&nrm=iso&rep=&Ing=pt

ISSN 0103-901


Forests are good option for bioenergy

Low soil quality



requirements

Yield of planted forests

Brazilian Feedstock Competitiveness

Competitiveness
Agricultural
products: good
Final Products:
only for some
feedstock

Reference is biofuel

for aviation

Cantarella et al, 2015

Feedstock diversification

> Cellulose

- Bagasse and trash
- > Energy cane
- > Tropical grasses
 - High potential yields > 50 t/ha DM
 - > Gaps and Limitations:
 - > Nutrient needs & associated GHGs emissions
 - Soil protection (SOM, soil quality & Ecossystem services)
 - > Logistics

Feedstock diversification

Oil (non food crops)

Macauba (*Acronomia aculeata*) and other tropical oil palms

- High potential yields; low water requirement than palm oil. Lack information for large scale cultivation
- > Jathropha
 - Potential but not a domesticated crop (harvest, disease, lack of uniformity)
- > Camelina
 - > Adapted to dry climate but low yields; little studies
- > Algae
 - > Also far from TRL 3-5

Feedstock diversification

Urban wastes

- > Solid wastes
- > Trees and gardening residues
 - > Low or negative cost of feedstock
 - Many large urban áreas in Brazil
- > Animal fat
 - > Feedstock for 14% of the biodiesel in Brazil
- Limitations and Gaps:
 - > Logistics and cost of collection and transportation
 - Cost for processing for energy
 - > Legislation

Thank you

Heitor Cantarella cantarella@iac.sp.gov.br