Microwave treatment of biomass

Dr Jennifer Dodson drjenniedodson@gmail.com

York One of Europe's most beautiful and historic cities

Green Chemistry Centre of Excellence

Excellence and innovation in Green Chemistry research across the bio-based economy.

Byproduct problem: World Biomass Residues: >1 bn t/yr & ££££ Legislation

20% renewable fuel by 2020 (EU) 30% renewables by 2030 (US)

Microwave technology Low temperature Energy efficient Any biomass Zero-waste Scalable

> Market Desire for Bio-based

Why microwaves?

UNIVERSITY of

- Rapid internal heating
- ✓ Uniform heating
- ✓ Instant control
- \checkmark Acceleration of reaction rate
- \checkmark Selective interaction with active groups

Green Chemistry Centre of Excellence

Versatile platform technology with two key approaches:

Pyrolysis

Microwave treatment under inert atmosphere (140 – 300 °C)

Key benefits:

- All biomass
- One-step formation of biofuels
- In-situ fractionation → lowacidity stable bio-naptha
- Target biomass components

Char for Gasification

Hydrothermal

Microwave treatment in water (100 – 260 °C)

Key benefits:

All biomass, especially wet

• Hydrolysis of polysaccharides to fermentable sugars

• Extraction of polysaccharides (e.g. pectin)

Fermentation pretreatment

Green Chemistry Centre of Excellence of Excellence

University of York

Microwave pyrolysis

Microwave results in pyrolysis at lower temperature for all biomass and biomass components studied \rightarrow reduced energy

Temperature of carbonisation, °C

Biomass	Temperature of Microwave decomposition, °C	Temperature of Conventional decomposition °C
Hemicellulose	160	280
Cellulose	180	320
Wheat straw	160	341
Wood	164	371
Paper	200	420

MW pyrolysis enables in-situ bio-oil separation

- Applicable to wide range of biomass including wood, paper, sugarcane bagasse, seaweed, wheat straw, barley dust.
- In-situ fractionation to valuable products:
 - Fraction 2 (acid, water) source of acids for bio-surfactants
 - Fraction 4 (sugars) basis for platform molecules
 - Fractions 3 & 5 (Phenols, furans) drop-in replacements for petrochemical industry

Characteristics of MW Bio-Char

- High calorific value ~30kJ/g
- Good grindability
- Good hydrophobicity
- Co-firing with coal
- Ideal for gasification

Semi-scale microwave trials(30 kg/h)

12 trials

5 types of biomass

Temperature: 110-190°C

18 kg of wheat straw

\mathbf{V}

+

6.7 kg of char

5.7 kg of oil

Green Chemistry Centre of Excellence

UNIVERSITY of York

Benefit of Microwave Hydrolysis

- High efficiency of heating: water is the best microwave absorber
- \checkmark Saving energy of water vaporisation
- Direct solubilisation of biomass due to hydrolysis of polysaccharides

- Sugars yield increases x20 in the presence of microwave irradiation
 - High selectivity toward glucose. Repeated MW hydrolysis of solid produces up to 40% yield of sugars at 220°C

Fan et al, JACS, 2013, 1178

Green Chemistry Centre of Excellence of Excellence

UNIVERSITY of York

Continuous microwave processor. 30 kg/h

Getting ready for the large scale!

Extending to pressurised reactors

MW as a heater

Continuous electric current:

•Continuous electric current of dipole is impossible

Alternative electric current (*dipolar polarization mechanism*):

- •Inversion of orientation at every altremance
- •Stirring and friction of molecule
- Intenal homogeneous heating

- Alternative electric current of ions (*conduction mechanism*):
 - •Debye effect: If v > 109 resistance decrease dramatically

Green Chemistry Centre of Excellence

