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SUMMARY

Three strains of Butyrivibrio fibrisolvens were isolated from the rumen
contents of cattle feeding on red (Trifolium pratense L.) or white (T. repens L.)
clover. The substrates used in these isolations were plant hemicellulose
fractions other than simple insoluble xylan. The strains showed some dif-
ferences in their ability to grow on various plant polysaccharides and to secrete
polysaccharases specific to these polymers. The same type of rumen contents
vielded, on polygalacturonic acid media, a strain of Lachnospira multiparus
which grew only on pectin and secreted as sole polysaccharase a polygalac-
turonase. Only one of the three B. fibrisolvens strains grew vigorously on
polygalacturonic acid and its polygalacturonase appeared to be different to
that of the L. multiparus.

INTRODUCTION

The main polysaccharides of pasture plant cell walls are cellulose and xylan and
many studies have been made on the action of rumen bacteria on these compounds.
Thus strains of Butyrivibrio fibrisolvens, Bacteroides succinogenes, B. ruminocola,
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A scheme for designating enzymes that hydrolyse the polysaccharides in
the cell walls of plants
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Abstract A scheme is proposed for designating enzymes that
hydrolyse the polysaccharides in the cell walls of plants. These
enzymes are pred ly B-1,4-gly The sch is
based on the classification of the catalytic domains of glycoside
hydrolases into families of related amino acid sequences. The new
designation for an enzyme indicates its family and, because all
members of a family have these characteristics in common, its
three-dimensional fold and stereospecificity of hydrolysis. The
scheme is intended to simplify comparison of the systems of
enzymes produced by different microorganisms for the hydrolysis
of plant cell walls.
© 1998 Federation of European Biochemical Societies.

Key words: Enzyme nomenclature; Structure; Glycosyl
hydrolase

of these enzymes better than substrate specificity alone; (ii)
help to reveal the evolutionary relationships between these
enzymes; and (iii) provide a convenient tool to derive mech-
anistic information from the protein sequence data [7,8] (an
updated list of the glycosyl hydrolase families can be found at
the Expasy server http://www.expasy.ch/cgi-bin/lists?glyco-
sid.txt). Many glycoside hydrolases are modular, comprising
a catalytic domain (CD) and one or more ancillary domains
[1,10]. The CDs catalyse hydrolysis with either retention or
inversion of the configuration at the anomeric centre of the
substrate [11-14]. In addition to revealing overall structural
relationships of glycosyl hydrolases, the hydrophobic cluster
analysis (HCA) and amino acid sequence alignment of the
catalytic domains allow prediction of the stereospecific out-

M t H D H f to the recalcitrant nature of the substrate toward
e a g e n 0 m I c Isc Ove ry 0 enzymatic breakdown and the relatively low ac-
- - tivity of currently available hydrolytic enzymes.
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G e n 0 m es fro m cOw R u m e n degrading enzymes has been limited (3), retrieving
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Cell wall model
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Cell Wall Architecture of grasses
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KIT WITH 16 ANTIBODIES FOR SUGARCANE CELL WALL ANALYSIS
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How endogenous plant cell-wall degradation mechanisms
can help achieve higher efficiency in saccharification of
biomass
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LatticeBarametersdAngstrons)

Enzyme organism a b c Reference
Beta-glucosidase maize 60 118 70 CzjzekRtl.Biochem.§2001)354,B7-46
CBH1 Trichodermal@eseei 60 50 40 Divne:t@|.@1994)Bcience?65:524-527
Endopolygalacturonase Aspergillusihiger 65,5 201,24 49,07 Santen@t@1.51999)ABCR274:30474-30480
PectiniVethylEsterase carrot 49,5 77,6 89,2 Johanssont@l.{2002)FEBSAetters?H14:243-249
alpha@alactosidase rice 63,7 71,4 84,2 Fujimoto@®t&I.{2003)ABC,278:20313-20318.
beta-galactosidase Trichoderma@eseei 67,4 69,2 81,5 Maksimainent&I.{2011)3.Str.Biol.A74:156-163
XTH Nasturtium 116,1 116,1 63,1 Baumant&I.(2007)ThePlantell9:1947-<963
Lichenase barley 49.6 82.9 77.5 Muller@@tz|.§1998)ABCR73:3438-3446
betaxpansin maize 35 30 24 Yennawar@tz|.{2005)@PNASEL03:FA4664-14671

According to Carpita et al. (Science, 1979, 205:1979-

1147) the size exclusion limit for root hair cells of

Raphanus sativus and Gossypium hirsutum are 35-38

and 38-40 Angstrons respectively

For sugarcane stalks, Maziero et al. (J.Agr.Food

Chem, 2013) calculated 50 Angstrons, varying from
more to less porous from top to bottom of the plant

TWO EVIDENCES FOR THE ROLE OF

POROSITY IN RECALCITRANCE

Buckeridge, M.S., Dos Santos, W.D., Tiné, M.A.S., De Souza, A.P. (2015) The Cell Wall Architecture of
Sugarcane and its Implications to Cell Wall Recalcitrance. Compendium of Bioenergy Crops: Sugarcane 0

edited by Eric Lam. CRC Press, Taylor and Francis

300

A Intact walls B

endo - BExylanase
50 | Bexy |

N

200 A 4

100 A 4

4M NaOH
endo-BExylanase

208

50 A b i
N NI T .
0 5 10 15 20 o 5@ 108 150
120e
N C Intact walls D 4M NaOH
10024 endo - Be- xyloglucanase endo - BE- xyloglucanase

e

800

6007

400E

200

oz Lodper

oel 5B 10e 158 206D

5 10 15 20

Pulsed Amperometric Detection Response (nC)

250
E Intact walls F 4M NaOH
Lichenase Lichenase
200 1 i
150 A 4
100 A g 4
50 A i
h
.1 A pl 'J _ﬁ_' T
0 5 10 15 200 5@ 108 150 202

Elution time (min)



