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• Rivers and freshwater ecosystems release high levels of CO2 to

the atmosphere

• Globally these waters process, transport and sequester 2.7 Pg C

yr-1 (a)

• Similar value to the estimated for terrestrial ecosystems carbon

sequestration from human activities (2.8 Pg C yr-1 (b))

(a) Battin et al., 2009; Tranvik et al., 2009, (b) Canadell et al., 2007;

Fluvial processing plays a key role on carbon (and associate nutrients) transport and re-

cycling  not only in the watersheds but also in the oceans that receive their waters. 

Raymond, 2005)



develop tools to comprehensively describe Amazonian fluvial 

biogeochemistry and the role of rivers in the regional C cycle to predict 

their responses to climate change

Long term data collection : 20 extensive sampling (Rede Beija-Rio), distributed in 

the Amazon basin

+

Intensive campaigns employing several measurement methods and laboratory 

experiments at least once at each stage of the hydrograph, at several spatial scales

Produce scientific data on Amazonian fluvial systems to feed 

a carbon base basin wide model to predict their responses to 

global climate change and regional land use change



 Evading to the atmosphere ~0,5 Gt C yr-1

 13 x more C than discharged to the ocean:

TOC: 0,036 and DIC: 0,035 Gt.yr-1

 Higher than the amount released by regional deforestation at it’s

peak (0,38 GtC yr-1, ~25.000 km2. yr-1)

We have demonstrated that the rivers of the Amazon play an important role in the regional carbon cycle 
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55 % of terrestrial lignin is

degraded by in channel bacteria

What is these CO2 main source? 

In channel

respiration of young

labile organic matter

(~5 year)



CO2 evasion main C export pathway:

289 Gg C yr−1

 ~2,4 x the amount of C exported as dissolved inorganic carbon

(121 Gg C y−1) and 1,6 x as dissolved organic carbon (185 Gg C

y−1)
Ji-Paraná River Basin 

~92% of the Amazon river network are small rivers,

usually supersaturated with CO2

• surface small rivers area: 0,3± 0,05 millions of km2,

• Potential evasion to the atmosphere:170 ± 42 Tg C

y−1 as CO2

• Relevant role in the regional carbon cycle

Rasera et al., 2008



The most striking finding of our current integrated network approach is that, regardless of 

any scale or basin characteristic, the distribution of biogenic species show the same 

seasonal patterns, tightly connected to the hydrograph 

5 year time series of  CO2 fluxes in Amazon rivers, spanning 

the whole hydrograph and encompassing representative rivers 

of the region



Group I- drain low lands,

highly weathered, high

levels of DOM, low DIC

and pH

While these river can be separated into 3 groups according to their water characteristics: 

Solimões

Group III- drain the Brazilian shield, low sediments

and OM, inter medium DIC levels, pH ~ neutral

Group II- High sediment transport from the Andes,

high DIC concentrations and pH ~ neutral

Negro, Cristalino and 
Caxiuanã Teles Pires, Javaés

CO2 Fluxes seasonal cycles

High viariability for both low and high water: -0,8 a 

15,3 mmol CO2 m-2 s-1
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• CO2 Fluxes always higher at high water

• Key to develop adequate models to

describe C cycle: a seasonal pattern link to

the hydrograph can simplify scaling



• Wide spatial and temporal variability

• Hydrograph differential effect

• We estimate an emission of 0.49(±0.09) Tg CH4 yr -1 from large

rivers Or 44 – 65% of the global tropical river CH4 emissions and

22 – 28% of the global river emission

• These values are to 31–84% higher than the previous estimate

(Bastviken et al., 2011)

Two mechanism of emission, diffusion and ebullition + Methane oxidation  

MOX
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E.G.: Higher levels of MOX at high 

water in black and white water rivers 

and minimal in clear water at low 

water

Abundance of genetic markers for MOX bacteria (pmoA) were positively correlated 

with enhanced signals of oxidation: independent support for the detected MOX 

patterns. 

varied according to hydrologic regime and general tributaries geochemical 

characteristics. 
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• MOX in large Amazonian rivers can consume from

0.45 to 2.07 Tg CH4 yr-1 or up to 7% of the estimated

global soil sink.

• Climate change and changes in hydrology (e.g.

construction of dams) can alter this balance,

influencing CH4 emissions to atmosphere.

(MOX): diffusive CH4 flux can be reduced by ~ 28 –

96 % 



• Current CO2 flux: 0.8 Pg C yr-1 for upstream rivers from Óbidos (~70 % of the amazon basin)

• This value is 60 % higher than our previous measurements

• Fluxes are highly correlate to the hydrograph, moreover climate changes can lead to a significant change in ecosystem metabolism
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