

Research, Development & (Open) Innovation at Aché

Exploring understudied Kinases with the Structural Genomics Consortium

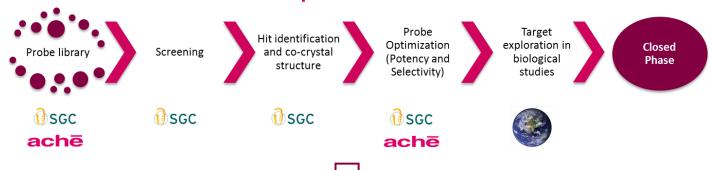
Cristiano Guimarães

- Privately owned company, 100% Brazilian, founded in 1966 by three families (Baptista, Siaulys, Depieri)
- Branded and non-branded generics in a portfolio of 303 brands in 747 SKUs
- **2**0+ medical specialties, 130 therapeutic classes
- > 176 programs in development
- 5 BUs: Prescription, OTC, Dermocosmetics, Specialty Care, Generics
- Multiple channels: wholesalers, pharmacies, hospitals, and government
- Leader in prescription in Brazil for the 8th consecutive year
- 4,500 employees (largest salesforce in Brazil)
- Net revenues of R\$ 2.4 Billion

:: Why Innovate?

SCENARIO

- Competition for price reductions and market share among generics;
- Unfavorable IP for the development of generics and branded generics:
 Evergreening of patents, art. 40;
- Big pharma crisis: prohibitive cost to develop a blockbuster, FDA hurdles, patent cliff;
- Big pharma is focused on few TAs: opportunity in deprioritized TAs;
- Risk and return sharing: partnership opportunities with big pharma;
- R&D decentralization: CROs with expertise in different stages of development;
- Government funding available for innovation.

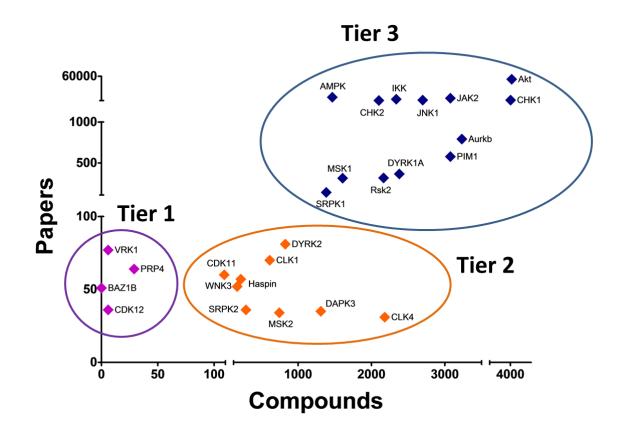

INNOVATION VALUE

- IP generation as a barrier to competitors;
- Greater life cycle of innovative products;
- Sustainable growth of the company (greater than organic growth);
- Generation of out-licensing and codevelopment opportunities: faster return on investment;
- Generation/Addition of know-how and complexity to the processes of the company;
- Foster the development of capabilities/expertise in Brazil;
- Increase in company's intangible assets.

Open Phase

Unicamp Kinases

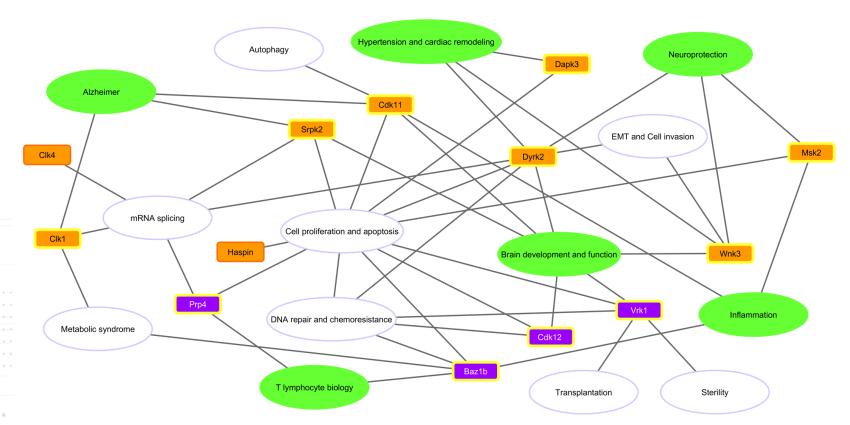
- Tier 1: few compounds and poorly studied targets
- Tier 2: many compounds allow the study of targets
- Tier 3: many compounds and well studied targets


DRUGS Must be safe and effective PROBES Ask a specific biological question

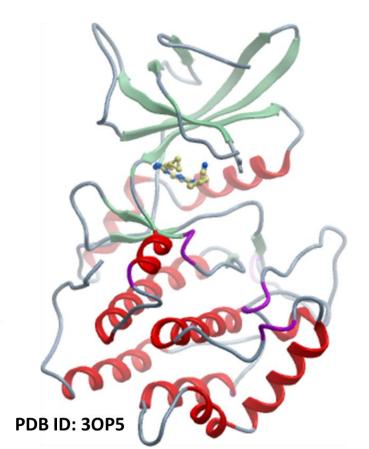
- May have undefined MoA
- IP restrictions; limited availability
- Must have human bioavailability
- High bar for physicochemical (guidelines for MW, lipophilicity, etc.) and pharmaceutic properties (stability, reasonable and economic synthesis, defined crystallization form, etc.)

- Defined MoA is required
- Needs selectivity
- Freely available (both the physical compound itself and activity data)
- Drug-like properties, such as bioavailability, not necessarily required
- Value is markedly enhanced by use of structurally related inactive and structurally unrelated active compounds

:: Unicamp Kinases



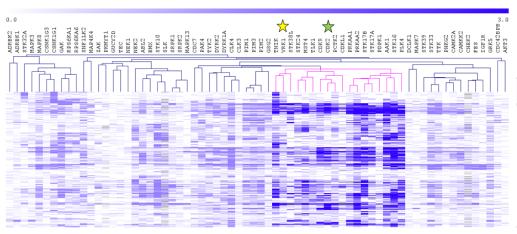
0 0


ache

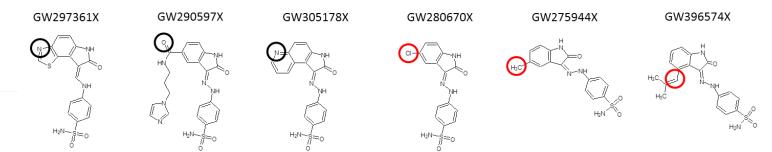
:: VRK1: Vaccinia-related kinase 1

- Cellular proliferation, cell cycle regulation, and carcinogenesis (Valbuena et al, 2011)
- Confers resistance to DNA-damaging agents in human breast cancer (Salzano et al, 2014)
- ➤ VRK1 expression increases after allograft heart transplantation (Qian et al, 2014)
- ▶ Plays a role in germ cell development, and its deficiency results in sterility (Choi et al, 2010; Wiebe et al, 2010)
- Spinal muscular atrophy-associated gene that regulates neuronal migration (Wee et al, 2010; Vinograd-Byk et al, 2015)

:: VRK1 Crystal Structure (Literature)

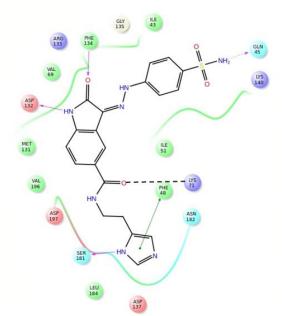


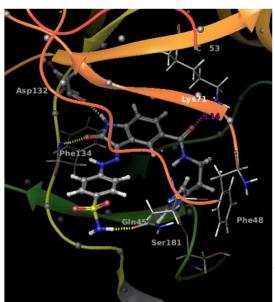
- Resolution: 2.4 Å
- Crystal structure: 4 identical chains
 with one ligand in each chain
- Ligand has key interactions with Phe134, Asp132 and Gln45


:: PKIS Screening

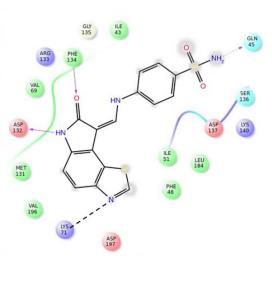
CDK2 series active in VRK1

Compound	VRK1 ΔTm	CDK2 ΔTm	CDK2 IC ₅₀	
GW297361X	9.7	13.0	2 nM	
GW290597X	6.0	8.0	25 nM	
GW305178X	4.7	13.9	3 nM	
GW280670X	2.1	9.8	43 nM	
GW275944X	0.5	8.9	46 nM	
GW396574X	0.1	13.5	2 nM	

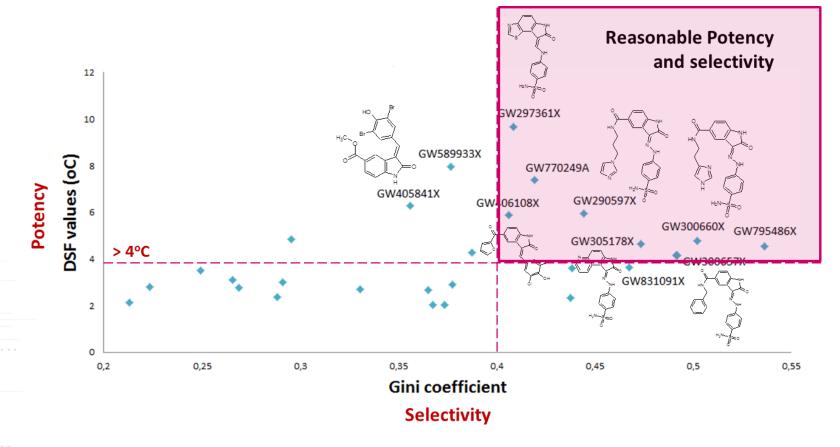

- HB aceptor seems important for VRK1 activity but not CDK2
- Inibitors likely rely on other interactions for CDK2 activity as the series has been optimized for this kinase


:: Docking Studies

ache


- Putative binding mode in VRK1 typical of kinases
- Docking suggests interaction between HB acceptor and Lys71 (catalytic Lys)
- In theory, good for potency, but bad for selectivity as it is a conserved residue

GW30660X ($\Delta T_{m} = 4.8^{\circ}$ C)



GW297361X ($\Delta T_m = 9.7^{\circ}$ C)

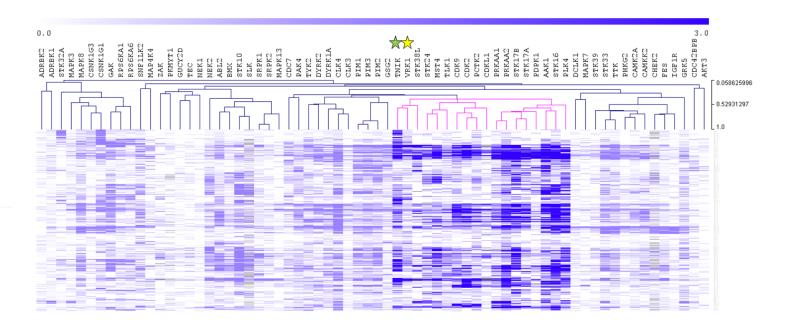
:: VRK1 Potency vs Selectivity

- Keep HB with Lys71, which seems important for VRK1 potency
- Explore potency and selectivity using amides, ketones, and esters chemistry that is library enabled and allow rapid SAR exploration

Kinase SARfari

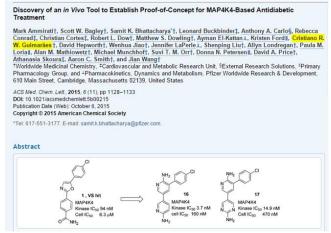
Kinases more similar to VRK1 (based on residues in the binding site)

VRK2, ERK1, ERK2, CDK2, NLK, ERK5, CDK3, CDK10, MKK4, MAP2K4

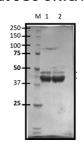

Name ¢	Organism ¢	Level 2 ◆	Level 3 ◆	Level 4 ◆	Drugs •	Bioactivities •	Compounds •	Distance 🔺
VRK2	Human	CK1	VRK	VRK	0	0	0	1.60
ERK1	mouse	CMGC	MAPK	ERK1	0	Z	5	3.02
ERK1	rat	CMGC	MAPK	ERK1	0	8	Z	3.02
ERK1	Human	CMGC	MAPK	ERK1	0	659	<u>560</u>	3.02
ERK1	Human	CMGC	MAPK	ERK1	0	0	0	3.02
ERK1	Human	CMGC	MAPK	ERK1	0	0	0	3.02
ERK1	Human	CMGC	MAPK	ERK1	0	1068	14417	3.03
ERK1	Human	CMGC	MAPK	ERK1	0	0	0	3.03
ERK2	xenopus	CMGC	MAPK	ERK1	0	5	5	3.03
CDK2	Human	CMGC	CDK	CDC2	0	0	0	3.12
NLK	Human	CMGC	MAPK	nmo	0	99	<u>85</u>	3.18
ERK5	Human	CMGC	MAPK	ERK5	0	<u>100</u>	<u>76</u>	3.25
CDK3	Human	CMGC	CDK	CDC2	0	<u>146</u>	140	3.26
CDK2	Human	CMGC	CDK	CDC2	0	4940	4076	3.31
CDK2	Human	CMGC	CDK	CDC2	0	0	0	3.33
CDK10	Human	CMGC	CDK	CDK10	0	0	0	3.34
MKK4	Human	STE	STE7	MEK4	0	109	106	3.41
MKK4	Human	STE	STE7	MEK4	0	0	0	3.41
MAP2K4	mouse	STE	STE7	MEK4	0	17	<u>18</u>	3.41

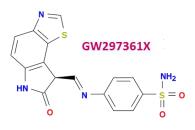
• Match between PKIS screening results and computational method suggest screening of additional CDK2 chemical matter (beyond PKIS) as well as of other similar kinases to VRK1


- Hierarchical clustering analysis of the kinase set based on inhibitors bioactivity profiles
- VRK1 Cluster: Similarity between VRK1 and TNIK bioactivity profiles

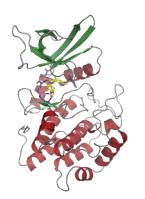


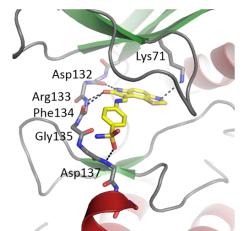
- VRK1 Cluster: Similarity between VRK1 and TNIK (same family as MAP4K4 and MINK)
- MAP4K4 crystal structures display unusual folded conformation for the P-loop selectivity hook as it binds favorably very small molecules, weak for kinases unable to adopt such conformation
- Is VRK1 also able to adopt the P-loop folded conformation?
- Searched ZINC database for commercially available TNIK/MAP4K4/MINK inhibitors as well as similar scaffolds to TNIK/MAP4K4/MINK chemical matter



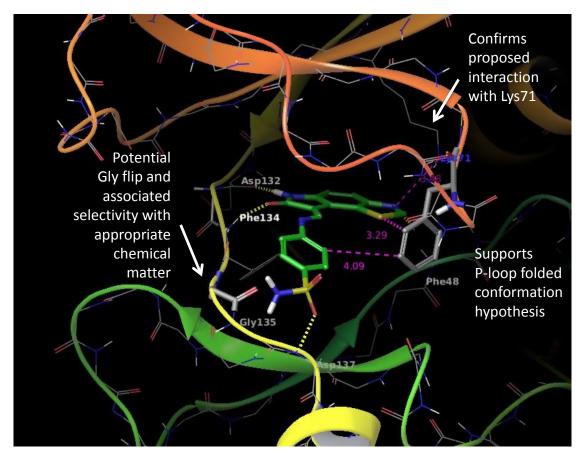


Protein production at SGC-UNICAMP


Starting compound from SGC-UNC



Co-crystallization at SGC-UNICAMP


Co-crystal structure solved at SGC-UNICAMP

1. OPEN PHASE:

- a) Innovative Biology: access to novel, potentially hot targets
- b) Networking: development of scientific relationships, collaborations
- c) **Develop people:** interaction with high caliber scientists worldwide, publish in high impact journals
- d) Brand equity: attract/retain talents, attract scientific/commercial partners

2. CLOSED PHASE:

- a) **Competitive edge:** knowledge and relationships generated during open phase provide competitive edge during closed phase
- b) **The Lottery Ticket:** really innovative drug discovery program if a novel target becomes hot

Obrigado!

Aché

Hatylas Azevedo Alessandra Mascarello Eloísa Ishikawa Fernando Gama Marcos Ferreira Jr Natanael Segretti **SGC-Unicamp**

Paulo Arruda

Opher Gileadi

Rafael Couñago

Anita Salmazzo

Carina Gileadi

Katlin Massirer

Marcella Reis

Natalia Verza

Nathalia Zocal

Paulo Godoi

Roberta Ruela-de-Souza

SGC-UNC

Bill Zuercher

Alison Axtman

Carrow Wells

Harold Drewry

Tim Wilson

SGC-Oxford

Wenhua Lee

SGC-Toronto

Aled Edwards