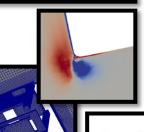
New Uses for Oil and Gas Technology Technology transfer to other applications

Marine constructions, applications to offshore wind and aquaculture

Norwegian Education and Research Delegation to Brazil September 21 2016, São Paolo

> Trygve Kristiansen Professor, Marine Hydrodynamics Department of Marine Technology, NTNU



Marine Operations

Laboratory tests

Floating and fixed structures and vessels

Wave, current and wind loads

Operability **Survival**

Research methods

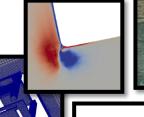
Standards

Risk analysis

Differences: Lower cost level required Fish welfare and biology

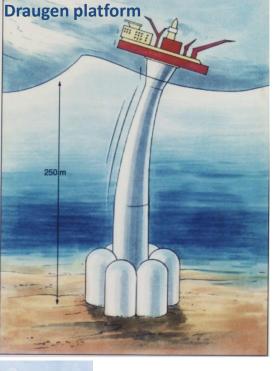
Hywind

Image courtesy of Vatte



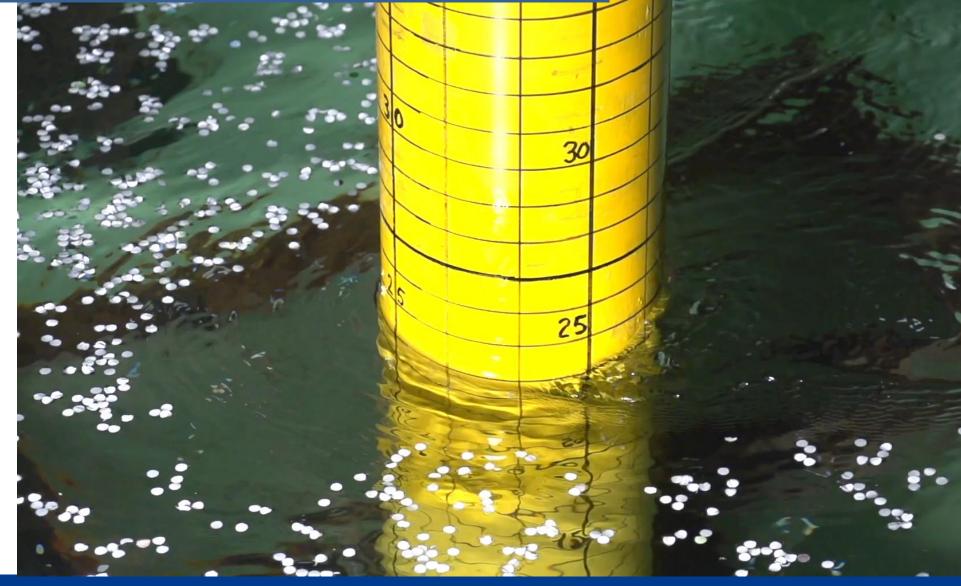
Theory and

numerical simulations



Example: Wind turbine in severe waves («Ringing»)

Ringing = Flexible global vibrations induced by severe storm waves Can potentially damage or break the structure


Not predicted by standard theories

Ringing load theories 1990s Applicable to offshore wind turbines

Example: Wind turbine in severe waves («Ringing»)

NTNU

Offshore wind

Opportunities

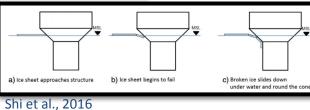
Worldwide renewable energy targets Significant and consistent wind resources at sea

Main challenge: Reducing LCOE (levelised cost of energy)

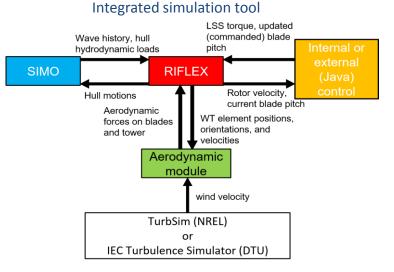
Complex (Structural – Hydrodynamic – Aerodynamic – Soil – Control – Electrical) Reduce cost of marine operations (installation, maintanance) Reduce construction costs (support structure design)

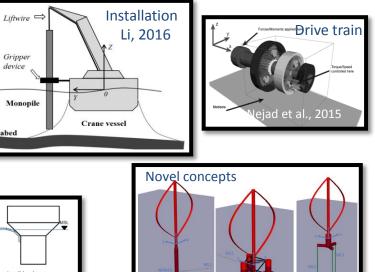
NTNU's contributions to technology transfer

Fixed and floating substructures (design and analysis) **Risk and reliability Operation & Maintenance concepts and strategies**

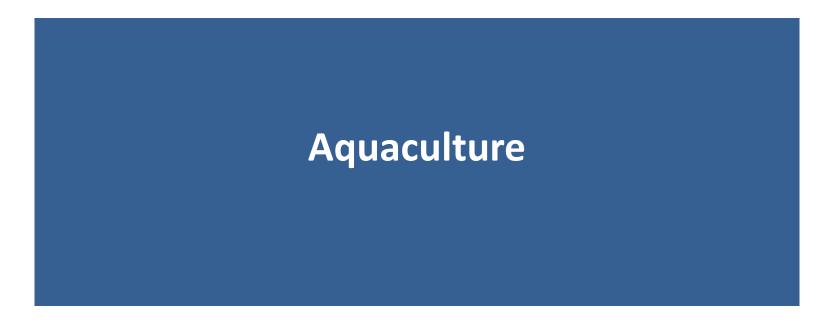

Emerging topics

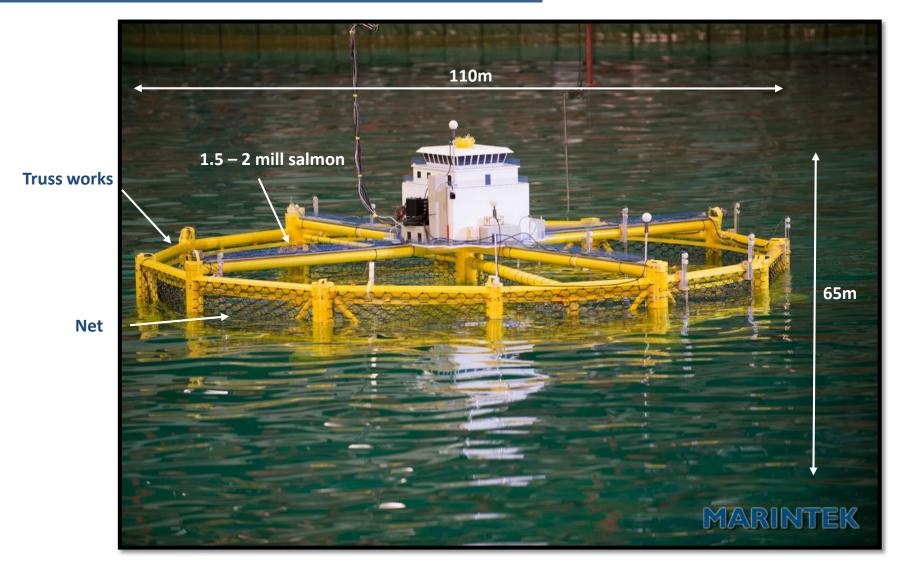
Optimization Lifetime extension/structural health monitoring Multi-use platforms


Bachynski et al., 2016



Gripper


device



Cheng et al., 201

Example 1: Ocean Farming tested in waves and current

Example 2: Traditional aquaculture farm in waves and current

Aquaculture

Opportunities

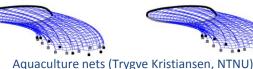
The need for marine bioresources – growing population International sustainability standards

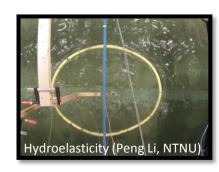
Challenges

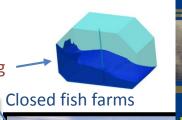
Biological – Fish health & welfare, environmental interactions **Structural** – Fish escape, cost-effective, exposed areas Marine operations – Logistics, cost-efficiency, fish handling

NTNU's contributions to technology transfer

Marine structures Marine operations – new vessel designs Logistics Life cycle analysis Surveillance


Emerging topics


Fish transport, methods and optimization **Closed fish farms**



Environmental interactions

(Yngvar Olsen, NTNU)

Cesos, NTNU

Selected recent publications (from NTNU)

Offshore wind turbines:

- 1. Trygve Kristiansen and Odd M. Faltinsen. *Ringing excitation loads on a circular cylinder in finite water depth* (To be submitted 2016) J. Fluid Mech.
- 2. Erin Bachynski, Trygve Kristiansen, Reza Firoozkoohi and Maxime Thys. *Experimental and numerical investigations of monopile ringing in irregular shallow water waves* (To be submitted 2016) Appl. Ocean Research
- 3. Erin Bachynski and Trygve Kristiansen. *Reproduction of monopile ringing events in reduced-duration model tests* (To be submitted 2016) OMAE2017.
- 4. Amir Nejad, Erin Bachynski, Marit Kvittem, Chenyu Luan, Zhen Gao, and Torgeir Moan. *Stochastic dynamic load effect and fatigue damage analysis of drivetrains in land-based and TLP, spar and semi-submersible floating wind turbines.* Marine Structures, 2015, 42, 137-153.
- 5. Wei Shi, Xiang Tan, Zhen Gao, and Torgeir Moan, *Numerical study of ice-induced loads and responses of a monopile-type offshore wind turbine in parked and operating conditions*. Cold Regions Science and Technology, 2016. 123: p. 121-139.
- 6. Erin Bachynski, Maxime Thys, Thomas Sauder, Valentin Chabaud, and Lars Ove Sæther. *Real-Time Hybrid Model Testing of a Braceless Semi-Submersible Wind Turbine: Part II: Experimental Results*. Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, 2016.
- 7. Lin Li. Dynamic Analysis of the Installation of Monopiles for Offshore Wind Turbines. PhD Thesis, NTNU, 2016.
- 8. Zhengshun Cheng, Kai Wang, Zhen Gao and Torgeir Moan. *Dynamic Response Analysis of Three Floating Wind Turbine Concepts with a Two-Bladed Darrieus Rotor*. Journal of Ocean and Wind Energy, 2015, 2, p. 213-222.

Aquaculture:

- 1. Peng Li, O. M. Faltinsen and Claudio Lugni. Nonlinear vertical accelerations of a floating torus in regular waves (In review 2016) J. Fluids and Structures,
- 2. Trygve Kristiansen and Odd M. Faltinsen. Experimental and numerical study of an aquaculture net cage with floater in waves and current (2015) J. Fluids and Structures, 54
- 3. Trygve Kristiansen and Odd M. Faltinsen. Modelling of current loads on aquaculture net cages (2012) J. Fluids and Structures, 34
- 4. Odd M. Faltinsen and Alexander Timokha. Sloshing (2009) Cambridge

https://www.ntnu.edu/oceans

Strategic Research Area 2014–2023

Thank you!

New Uses for Oil and Gas Technology Technology transfer to other applications

Marine constructions, applications to offshore wind and aquaculture

Norwegian Education and Research Delegation to Brazil September 21 2016, São Paolo

> Trygve Kristiansen Professor, Marine Hydrodynamics Department of Marine Technology, NTNU

