

Urban resilience in Finnish cities

Dr. Jatta Jussila-Suokas, Director of Innovation Haaga-Helia University of Applied Sciences &

Dr. Miimu Airaksinen, Research professor VTT Technical Research Centre of Finland

A city has many systems and sub systems which are interlinked and interconnected

A change in one place will affect on the whole system

Cities face significant challenges of urban densification & extreme weather conditions due to climate change

Need integration of innovative, smart technologies & decision-making processes with in-depth understanding of social fabric of cities

Role of RTOs:

- develop & optimise applicable technologies & systems
- provide quantitative evidence of integrated, smart technologies' efficacy, applicability, & cost-effectiveness
- leveraging industry partnerships to commericalise technology & support new economic opportunities (jobs, products, services)

URBAN HEAT ISLAND PROFILE

EFFECTS OF IMPERVIOUSNESS ON RUNOFF AND INFILTRATION

Natural Ground Cover 0% Impervious Surface

35% Evapotranspiration

Medium Density Residential (e.g. subdivision)

30-50% Impervious Surface

Low Density Residential (e.g. rural) 10–20% Impervious Surface

30% Evapotranspiration

55%
Runoff

15%
Infiltration

High Density Residential / Industrial / Commercial

75–100% Impervious Surface

Adaptation & mitigation technologies:

- Improved flood prediction & risk analysis – linking downscaled climate models with detailed catchment-scale hydrological models
- Increased flood buffering capacity blue-green-grey infrastructure solutions to manage excess floodwaters
- Real-time monitoring & response advanced sensors and integrated networks to enable real-time monitoring and decision-making

29/11/2016

Adaptation & mitigation technologies:

- Improved flood prediction & risk analysis – linking downscaled climate models with detailed catchment-scale hydrological models
- Increased flood buffering capacity integrated blue-green-grey infrastructure solutions to control flooding, purify stormwater runoff, & reduce heat island effect
- Real-time monitoring & response advanced sensors and integrated networks to enable real-time monitoring and decision-making

Adaptation & mitigation technologies:

- Improved flood prediction & risk analysis – linking downscaled climate models with detailed catchment-scale hydrological models
- Increased flood buffering capacity blue-green-grey infrastructure solutions to manage excess floodwaters
- Real-time monitoring & response advanced sensors and integrated networks to enable real-time monitoring and decision-making

Flood forecast simulations (10 min, 20 min, 30 min, 1 h, etc.)

7

Heavy rain, flooding, security and safety

Local warning system: SmartAlarm

29/11/2016

29/11/2016

Energy resilience, real time monitoring and

control

District development, Co-ZED

Optimization of an area-level solution:

- Buildings
- Energy system

Kuva Googlemaps

29/11/2016

VTT KEKO Results: easy and quick visualisation of energy efficiency and emissions for urban planning

Smart city

The publication presents a compilation of extended abstracts of VTT's recent research on smart cities.

DOWNLOAD THE
FREE PUBLICATION

The CITYZER Project

Time schedule: 2016-2018

■ Total budget: 5.5 M€

- Cityzer creates foundation for new digital services to support urban decision making related to severe weather and air quality phenomena
- Cityzer project develops an integrated ecosystem to provide localized and accurate fore- and nowcasts for urban weather and air quality
- Cityzer project connects research and commercial partners in Finland, Brazil and China
- More information: http://cityzer.fmi.fi

29.11.2016