

BIOEN DIVISIONS

BIOMASS

Contribute with knowledge and technologies for sugarcane improvement Enable a systems biology approach for biofuel crops

BIOFUEL TECHNOLOGIES

Increasing productivity, energy saving, water saving and minimizing environmental impacts

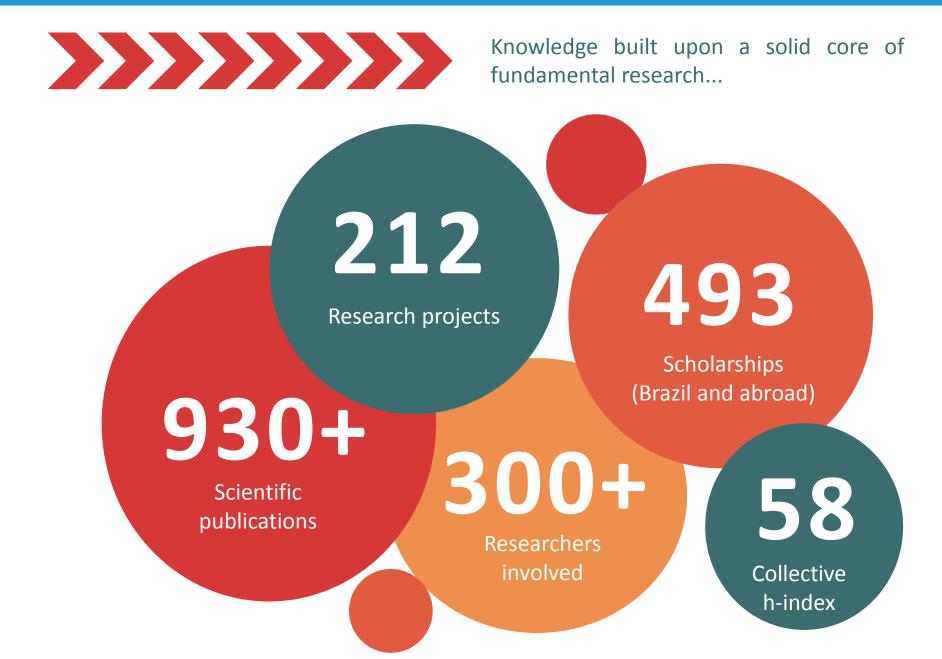
ENGINES

Flex-fuel engines with increased performance, durability and decreased consumption, pollutant emissions, aviation applications

BIOREFINERIES

Complete substitution of fossil fuel derived compounds Sugarchemistry for intermediate chemical production and alcoholchemistry as a petrochemistry substitute

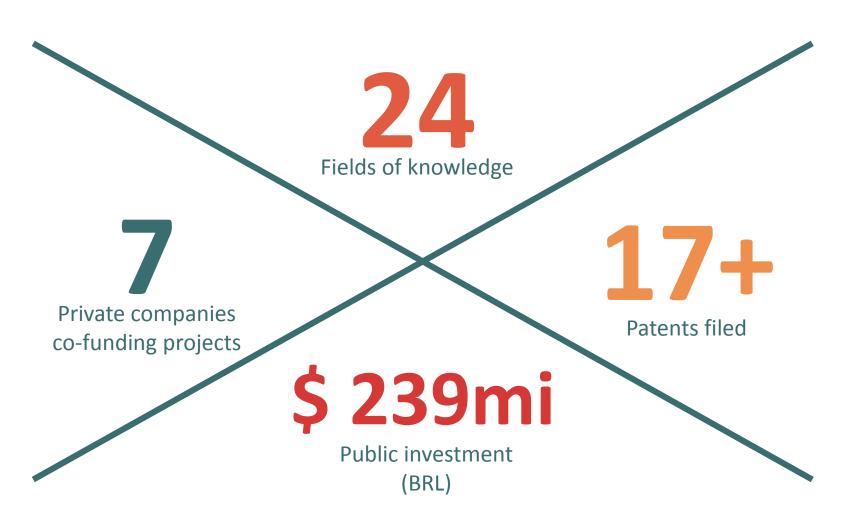
SUSTAINABILITY AND IMPACTS


Studies to consolidate sugarcane ethanol as the leading technology path to ethanol and derivatives production

Horizontal themes: social and economic Impacts, environmental studies and land use

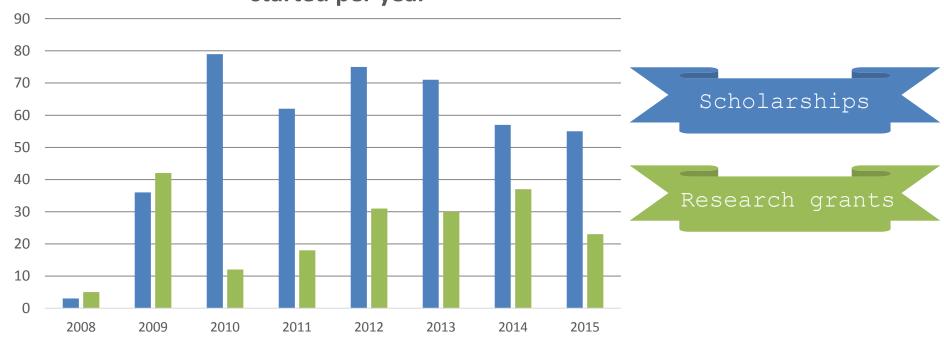
BIOEN FACTS AND FIGURES

- US\$ 167 million research expenditures by FAPESP and partners
 - 13 co-funding partners
 - private companies co-funding projects
 - **467 scholarships** 89 ongoing and 378 completed
 - **206** research projects 66 ongoing and 140 completed
 - 300+ researchers involved
 - 21 fields of knowledge
 - 920+ scientific publications
 - 17 patents filed


FAPESP Bioenergy Research Program BIOEN

FAPESP Bioenergy Research Program BIOEN

...and application-driven focus, in cooperation with private partners, are paramount for the development of new technologies.



FAPESP Bioenergy Research Program BIOEN

Human resources training is also an important aspect of the BIOEN Program.

Number of Research grants and Scholarships started per year

BIOEN network

RESEARCHERID

You are viewing the ResearcherlD Labs page for FAPESP, BIOEN (H-6149-2012)

Publications network: 30% of the articles derive from international cooperation

Publication type	Number
Articles	930
Book Chapters	81
Books	7
Doctoral theses	56
Master's dissertations	117
Abstracts	371
Awards	5
Patents	19
Software	1

Collaboration Network

The map graph below displays (up to) the top **500 geographic locations** for this researcher's co-authors. Scroll over the map and place your cursor on a pin to view city, state, and country information. Clicking on the pin will display bibliographic data for the paper that has cited the researcher's publication(s).

Quais os limites da produtividade da cana: 84 → 148 → 212 → 381 ton/Ha?

Plant Biotechnology Journal

Plant Biotechnology Journal (2010) 8, pp. 263-276

doi: 10.1111/j.1467-7652.2009.00491.x

Review article

Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content

Alessandro J. Waclawovsky^{1,†,‡}, Paloma M. Sato^{1,‡}, Carolina G. Lembke¹, Paul H. Moore² and Glaucia M. Souza^{1,*}

¹Departamento de Bioquímica, Instituto de Química, Av. Prof. Lineu Prestes, São Paulo, Brazil ²Hawaii Agriculture Research Center, Kunia, HI, USA

Table 1 Average, maximum and theoretical sugarcane yields (Australia, Colombia, and South Africa) and total dry matter production

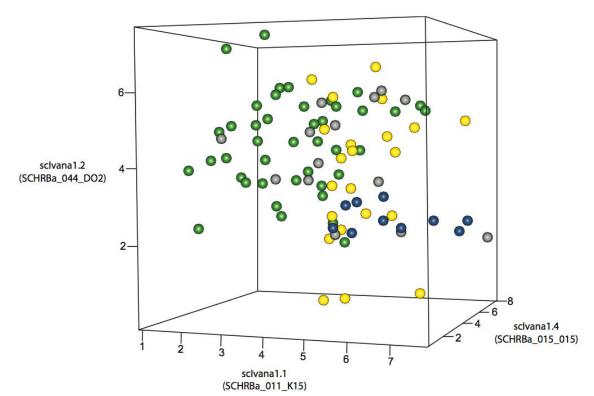
	Cane yield	Biomass*	
Type of yield	t/(ha yr)	t/(ha yr)	g/(m² d)
Commercial Average	84	39	10.7
Commercial maximum	148	69	18.8
Experimental maximum	212	98	27.0
Theoretical maximum	381	177	48.5

Translational genomics

Journal of Experimental Botany Advance Access published June 19, 2015

Journal of Experimental Botany doi:10.1093/jxb/erv283

This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)


RESEARCH PAPER

Using quantitative PCR with retrotransposon-based insertion polymorphisms as markers in sugarcane

Cushla J. Metcalfe¹, Sarah G. Oliveira¹, Jonas W. Gaiarsa¹, Karen S. Aitken², Monalisa S. Carneiro³, Fernanda Zatti³ and Marie-Anne Van Sluys^{1,*}

- ¹ GaTE-Lab, Departamento de Botânica, IBUSP, Universidade de São Paulo, rua do Matao 277, 05508-090, SP, Brazil
- ² CSIRO Agriculture Flagship, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, QLD 4072, Australia
- ³ Centro de Ciências Agrárias, Universidade Federal de São Carlos, Araras, 13600-970, SP, Brazil

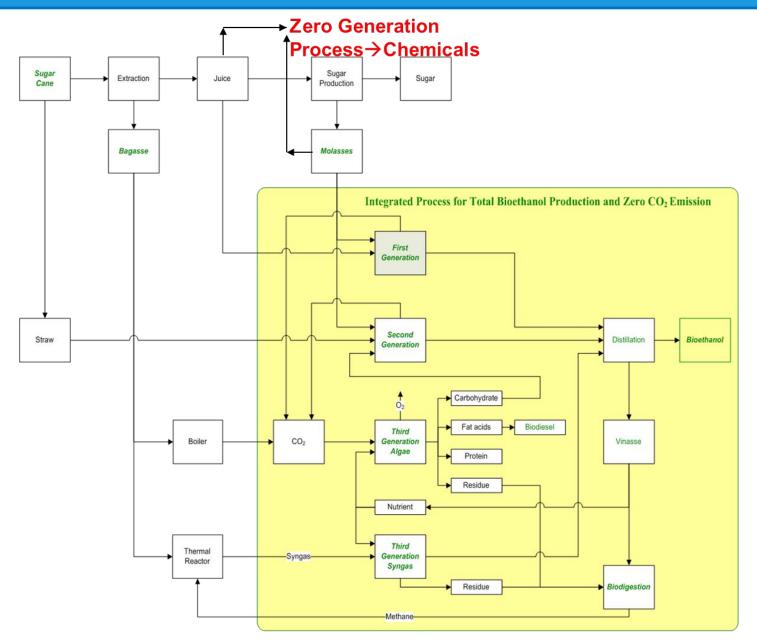
Received 15 April 2015; Revised 15 April 2011

^{*} To whom correspondence should be addr

FUNCTIONAL GENOMICS

Plant Mol Biol DOI 10.1007/s11103-016-0434-2

Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane


Savio Siqueira Ferreira¹ · Carlos Takeshi Hotta¹ · Viviane Guzzo de Carli Poelking^{2,6} · Debora Chaves Coelho Leite³ · Marcos Silveira Buckeridge³ · Marcelo Ehlers Loureiro² · Marcio Henrique Pereira Barbosa⁴ · Monalisa Sampaio Carneiro⁵ · Glaucia Mendes Souza¹

```
GH17_4
                                    ScCesA4
               Fucosyltransferase 2
                                                 ScMYB101
                                     ScMYB3
                            GH17 1
                                             ScCCR2
                                 ScMYB40
                  XTH 1
                         Sc4CL2
                                    GH17 2
                                               XTH 2
ABA-responsive transcription factor
                                                   Beta-expansin 2
                                  ScMYB52
        ScWRKY42 Xylosidase
                                                           ScCCR1
                                            ScEREB46
                            ScCsIF
                                                    Fucosyltransferase 1
                                   ScMYB48
Transcription factor PCF2
                                                       GH28 2
                              Sc4CL1
                                          ScEREB123
                 ScPAL2
                       ScbHLH4
                                  ScEREB40
                                                     AUX/IAA protein
                      ScEIL2
                                              GH28 1
                                                            ScCAD
                           ScNAC83
                                                   ScCsIC
                                     ScC3H1
        ScHB24
                   GH9
                                                 Beta-expansin 1
                                         ScbZIP4
    Fasciclin-like arabinogalactan protein
                           auxin-responsive transcription factor
                             Pectinacetylesterase
```

PITEs using a biorefinery approach

Process number	Researcher	Research area	Instit	utions
08/03606-9	Mattoso, L.H.C.	nanofibers from renewable sources	Embrapa	Braskem
08/03694-5	Maciel Filho, R.	acrylic and propionic acid production	LINICAMP	Braskem
08/03620-1	Menck, C.F.M.	glycerol transformation	USP	Braskem
10/52416-8	Contiero, J.	lactic acid production	unesp®	Braskem
08/03487-0	Lombardi, A.T.	microalgae; CO ₂ mitigation	ufistean	Braskem
07/51754-4	Zanchet, D.	glycerol hydrogenolysis	UNICAMP	OXITENO
07/51656-2	Maiorano, A.E.	enzymatic hydrolysis of sugarcane bagasse	1Pt INSTITUTO DE PESQUISAS TECNOLÓGICAS	OXITENO
07/51755-0	Curvelo, A.A.S.	organosolv delignification	USP	OXITENO
10/51298-1	Petraconi, G.	plasma treatment; syngas		VALE

Biofuel Technologies: Integrating 1st with 2nd Generation

Source: Thematic Project Fapesp 2008/57873-8- Coordinator Maciel Filho

Biorefineries: CO₂ as a solvent

OXITENO

Industrial Crops and Products 57 (2014) 141-149

Contents lists available at ScienceDirect

Industrial Crops and Products

journal homepage: www.elsevier.com/locate/indcrop

Enhancing liquid hot water (LHW) pretreatment of sugarcane bagasse by high pressure carbon dioxide (HP-CO₂)

Leandro Vinícius Alves Gurgel ^{a,c}, Maria Teresa Borges Pimenta ^b, Antonio Aprigio da Silva Curvelo ^{b,c,*}

Table 5Effect of LHW-HP-CO₂ pretreatment on the enzymatic digestibility of pretreated bagasse.

Sample	T(°C)	t (min)	Glu (g/L)	CC (%) ^a
Depithed bagasse	_	_	4.61	9.54
5	93.8 (-1.414)	60(0)	11.16	20.2
6	136.2 (+1.414)	60(0)	32.54	42.8
7	115(0)	17.6 (-1.414)	22.25	32.1
8	115(0)	102.4 (+1.414)	29.81	41.7
9	115(0)	60(0)	30.43	41.2

^a CC is the cellulose conversion. CC was calculated according to Eq. (3).

sugarcane bagasse

combined liquid hot water – high pressure carbon dioxide (LHW-HP-CO₂) pretreatment

enzymatic hydrolysis

cellulose conversion to glucose = 41.2%

The proposed pretreatment method may improve the overall economic feasibility of the process in a lignocellulosic biorefinery once ${\rm CO}_2$ is considered a green solvent, is non-corrosive and can be easily recovered and recycled

a Grupo de Físico-Química Orgânica, Departamento de Química, Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), 35400-000 Ouro Preto, Minas Gerais, Brazil

b Laboratório Nacional de Ciência eTecnologia do Bioetanol (CTBE), Centro de Pesquisa em Energia e Materiais (CNPEM), Caixa Postal 6179, 13083-970 Campinas. São Paulo. Brazil

^c Grupo de Físico-Química Orgânica, Departamento de Físico-Química, Instituto de Química de São Carlos (IQSC), Universidade de São Paulo (USP), Av. Trabalhador São Carlense, 400, Caixa Postal 780, 13560-970 São Carlos, São Paulo, Brazil

Biorefineries: acrylic acid from molasses

CHEMICAL ENGINEERING TRANSACTIONS

A publication of

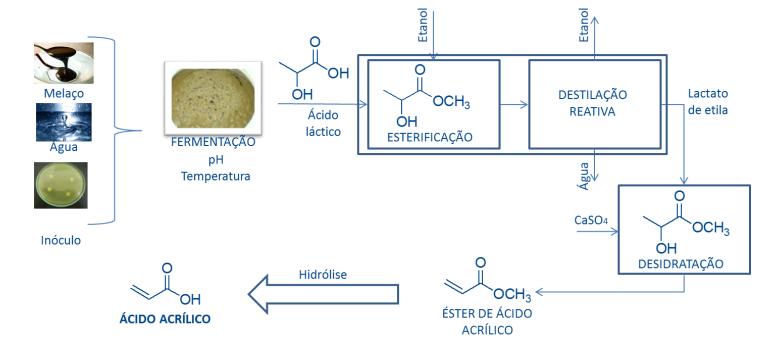
ADDC

The Italian Association of Chemical Engineering www.aldic.it/cet

VOL. 37, 2014

Guest Editors: Eliseo Ranzi, Katharina Kohse- Höinghaus Copyright © 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-28-0; ISSN 2283-9216

DOI: 10.3303/CET1437072


Hybrid Route to Produce Acrylic Acid from Sugarcane Molasses

John H. Bermudez Jaimes^a, Bruna T. Da Silva^a, Jaiver E. Jaimes Figueroa^a, Betânia H. Lunelli^a, Rubens Maciel Filho^a, Maria R. Wolf Maciel^a, Augusto T. Morita^b, Paulo. L. A. Coutinho^a

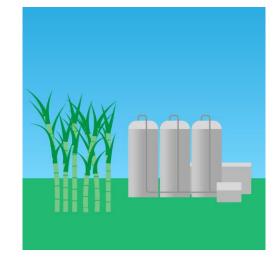
^aLaboratory of Optimization, Design and Advanced Control, School of Chemical Engineering, State University of Campinas, Av. Albert Einstein 500, CEP 13083-862 Campinas, Brazil.
^bBRASKEM, Av. das Nações Unidas 4777, 11th floor, CEP 05477-000 São Paulo, Brazil.
johnhervinbermudez@gmail.com

- sugarcane molasses as raw material to produce molecules with high added value as acrylic acid, which is commonly obtained from fossil fuels sources
- the use of renewable feedstock contributes to many issues regarding environmental concerns

Biorefineries: 2nd generation PHA from xylose

International Journal of Biological Macromolecules 71 (2014) 2-7

Contents lists available at ScienceDirect


International Journal of Biological Macromolecules

journal homepage: www.elsevier.com/locate/ijbiomac

Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol

Luiziana Ferreira Silva ^{a,*}, Marilda Keico Taciro ^a, Gil Raicher ^a, Rosane Aparecida Moniz Piccoli ^b, Thatiane Teixeira Mendonça ^a, Mateus Schreiner Garcez Lopes ^{a,1}, José Gregório Cabrera Gomez ^a

Department of Microbiology, Institute of Biomedical Sciences, University of S\u00e4o Paulo, Av. Prof. Lineu Prestes, 1374, 05508-000 S\u00e4o Paulo, SP, Brazil

Polyhydroxyalkanoates (PHA) are **biodegradable** and biocompatible bacterial thermoplastic **polymers** that can be obtained from **renewable resources** (sugarcane agricultural residues)

Although PHA production from sucrose integrated to a 1G ethanol and sugar mill has been proposed in the past, the integration of the process of **2G ethanol** in the context of a **biorefinery** will provide enormous amounts of xylose, which could be applied to produce PHA, establishing a **second-generation PHA production process**

b Instituto de Pesquisas Tecnológicas do Estado de São Paulo S.A., IPT, Av. Prof. Almeida Prado, 532, 05508-901 Brazil

Hydrogen from ethanol

ARTICLE IN PRESS

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (2015) 1-7

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Potential applications of the hydrogen and the high energy biofuel blend produced by ethanol dehydrogenation on a Cu/ZrO₂ catalyst

André G. Sato ^a, Ana L.G. Biancolli ^b, Valdecir A. Paganin ^b, Gabriel C. da Silva ^b, Glauber Cruz ^c, Antonio M. dos Santos ^c, Edson A. Ticianelli ^b, ^a

- ^a Department of Chemistry, Universidade Federal de Viçosa, CEP 36570-000, Viçosa, MG, Brazil
- b Department of Physical Chemistry, IQSC Universidade de São Paulo, C.P. 780, CEP 13560-970, Brazil
- ^c Department of Mechanical Engineering, EESC, Universidade de São Paulo, C.P. 780, CEP 13560-970, Brazil

CONCLUSIONS

- liquid fuel blend obtained from ethanol dehydrogenation has a heat of combustion higher than that of ethanol, and it is essentially formed by unreacted ethanol, acetaldehyde and ethyl acetate
- results demonstrate the advantages of combining the renewable ethanol as hydrogen carrier for highly efficient PEMFC technology avoiding on board hydrogen storage
- the co-production of the **fuel blend** with higher specific enthalpy which could disseminate the **use of these** biofuels in regions with harsh winter conditions

GOALS

To analyze the potential application of:

- the liquid effluent coming from a catalytic ethanol dehydrogenation reactor as a fuel blend or additive for internal combustion engines, and
- the hydrogen produced, as fuel for a polymer electrolyte fuel cell (PEMFC)

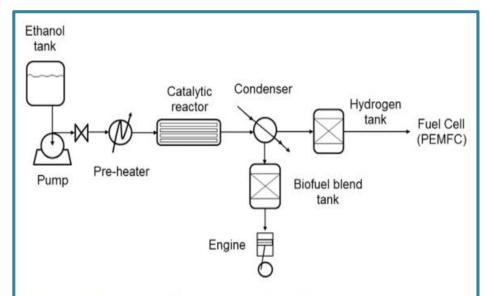


Fig. 1 — Schematic illustration of a catalytic system employed for biofuel blend and hydrogen production from ethanol.

FAPESP+Peugeot-Citroen: biofuel engines

Advanced Research Centers: 10-year contracts, researchers from universities and from company

British Gas, BG: natural gas from renewable sources

FAPESP inaugura Centro de Pesquisa em parceria com a PSA Peugeot Citroën

Iniciativa apoiará o desenvolvimento de motores movidos a biocombustíveis com participação de pesquisadores da USP,
Unicamp, ITA e Instituto Mauá de Tecnologia

A Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) e a PSA Peugeot Citroën do Brasil anunciaram ontem, dia 04 de novembro de 2014, na sede da FAPESP, o lançamento do Centro de Pesquisa em Engenharia "Professor Urbano Ernesto Stumpf", para desenvolvimento de motores de combustão interna, adaptados ou desenvolvidos especificamente para biocombustíveis e de estudos sobre a sustentabilidade dos biocombustíveis.

SCOPE-FAPESP

Reporting a global assessment of Bioenergy & Sustainability 137 experts from 24 countries

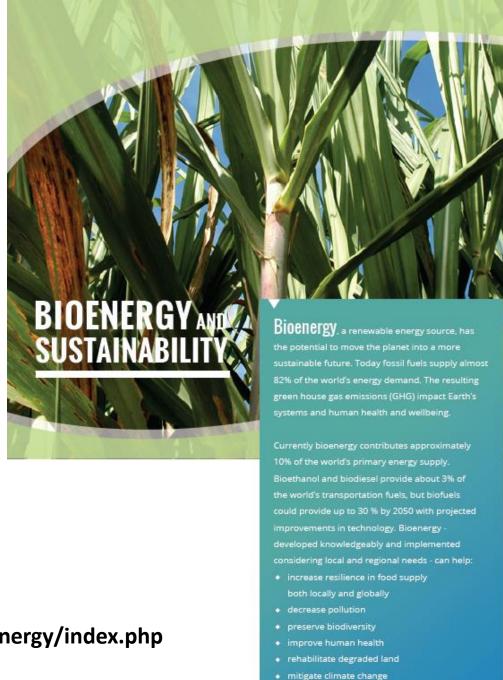
Bioenergy now
Bioenergy expansion
Energy security
Food security
Environmental and climate
security
Sustainable development and
Innovation
The much needed science

Developed and developing regions Numbers, cases, issues, solutions

779-page Ebook
Download at http://bioenfapesp.org

SCOPE • FAPESP • BIOEN • BIOTA • FAPESP CLIMATE CHANGE

Bioenergy & Sustainability: bridging the gaps


EDITED BY

Glaucia Mendes Souza Reynaldo L. Victoria Carlos A. Joly Luciano M. Verdade

SCOPE-FAPESP Bioenergy & Sustainability Policy Brief

São Paulo - FAPESP
São Paulo - FIESP
Brussels - EU Sustainable Energy Week
Washington DC – World Bank
Academia Brasileira de Ciências
Brussels – Bioenergy & Biomass V
Berlin – Global Bioeconomy Summitt
Rotterdam – EcoBio
São Paulo – FAPESP, ICRAF and SEI

provide economic and business oportunities

http://bioenfapesp.org/scopebioenergy/index.php

NEWS

Home Video World UK Business Tech Science Magazine Entertainment & Arts

Science & Environment

Bioenergy can deliver cleaner future, says global report

By Mark Kinver Environment reporter, BBC News

17 June 2015 | Science & Environment

A global bioenergy assessment has said biofuels could meet up to a third of the world's transportation fuel needs by the middle of the century.

Low carbon agriculture

Energy Security

Sugarcane bioethanol contributes to 20% of the Brazilian liquid fuels matrix

Biomass cogeneration can contribute with up to 18% of Brazil's electricity demand

Only 1% of brazilian land used to produce sugarcane contributes to 19% of the country's primary energy

Sustainable Development

The sugarcane industry contributes to agriculture modernization, rural development, improved education and the creation of jobs

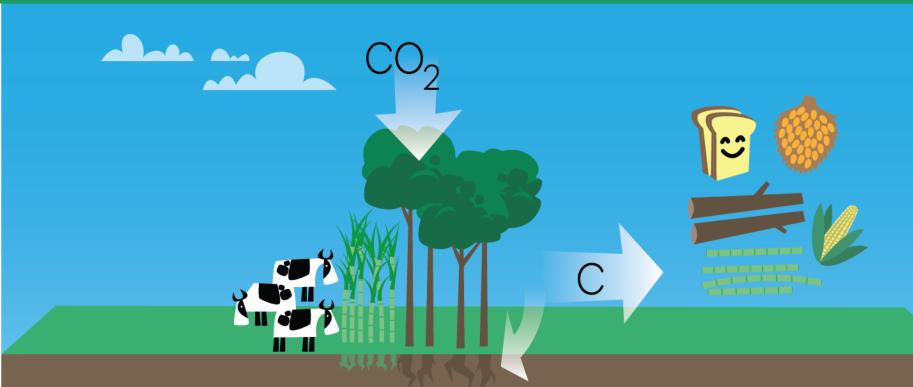
Opportunities for innovation

Environmental Security

The use of Sugarcane bioethanol can reduce CO₂ emissions by 76% when compared to gasoline

Multi-functional landscapes, biofuel certification, agroecological zoning to maximize benefits


Food Security


Sugarcane production for energy did no decrease food production

Expansion is occurring mainly in pasture land

Integrated food-energy systems are needed and to improve use of agricultural residues

Existing pastureland could support almost four times the numbers of animals. Bringing the poorest-performing pastures up to 50% of their maximum attainable density would more than double the global stock of grazing animals.

Actions to improve pasture conditions, along with livestock production intensification, can effectively make large amounts of land available for alternative uses.

World Road Transport Liquid Biofuels Demand

2010

2050

• 3% Biofuels 27%

800 million cars

50 countries, including many developing countries, now have biofuels mandates with blends of 5-27%, many driven by climate change

2.1 billion cars

Advanced automotive technology has expanded the use of ethanol Biofuels could contribute to up to ~30% Electricity, hydrogen, CNG/LPG to ~20%

Programa Integrado de Doutorado em BIOENERGIA: USP-UNICAMP- UNESP

Corpo Docente USP – 21

Tito José Bonagamba (SC)

Paulo Seleghim Junior (SC)

Francisco Emiilio Baccaro Nigro (SP)

José Gregório Cabrera Gomez (SP)

Glaucia Mendes Souza (SP)

Rudinei Toneto Junior (RP)

Carlos Eduardo Pellegrino Cerri (ESALQ)

Igor Polikarpov (SC)

Carlos Alberto Labate (ESALQ)

José Antonio Frizzone (ESALQ)

Eduardo Ribeiro de Azevedo (SC)

Suani Teixeira Coelho (SP)

Antonio Aprigio da Silva Curvelo (SC)

Gabriel Rodrigues Alves Margarido (ESALQ)

Igor Cesarino (SP)

João Renato Carvalho Muniz (SC)

Cristiano Bigonha Tibiriçá (EESC)

Pedro Miguel Vidinha Gomes (IQ)

Tatiane da Franca Silva (EEL)

Fernando Segato (EEL)

Flavia Vischi Winck *

Corpo Docente UNICAMP - 18

André Tosi Furtado (IGE)

Andreas Karoly Gombert (FEA)

Antonio José de Almeida Meirelles (FEA)

Antonio Riul Jr (IFI)

Carla Kazue Nakao Cavaliero (FEM)

Gonçalo Amarante Guimarães Pereira (IB)

Jackson Dirceu Megiatto Jr (IQ)

José Maria Ferreira Jardim da Silveira (IE)

Luís Augusto Barbosa Cortez (FEAGRI)

Marcelo Menossi (IB)

Marco Aurélio Pinheiro Lima (IFGW)

Munir Salomão Skaf (IQ)

Paulo Sérgio Graziano Magalhães (FEAGRI)

Rafael Vasconcelos Ribeiro (IB)

Rubens Maciel Filho (FEQ)

Telma Teixeira Franco (FEQ)

Marcus Bruno Soares Jr. (FEA)

Lucas Rios do Amaral (FEAGRI)

Corpo Docente UNESP - 15

Jonas Contiero (RC)

Eduardo Alves de Almeida (SJRP)

Cecilia Laluce (ARAR)

Marcia Justino Rossini Mutton (JAB)

Pedro de Oliva Neto (ASS)

Edivaldo Domingues Velini (BOT)

Eleni Gomes (SJRP)

Ricardo Alan Verdu Ramos (IS)

Edvaldo Aparecido Amaral da Silva (BOT)

Nelson Ramos Stradiotto (ARA)

José Luiz Silveira (GUAR)

Afonso Lopes (JAB)

Eliana Gertudes de Macedo Lemos (BOT)

Michel Brienzo (IPBEN)

André Damasio (IPBEN)

<u>Prédio existente (2.990 m²)</u>, antes ocupado pelo Centro de Tecnologia (CT), que está sendo reformado.

Previsão de conclusão: dezembro de 2016

Novo prédio (1.115 m²), em construção com recursos do GESP, ao lado do prédio existente.

Previsão de conclusão: dezembro de 2017

Laboratório Central – Rio Claro

Área Reformada: 1284 m²

Inauguração: Dezembro de 2014

<u>Laboratório de Metabolômica (Instituto de Química – USP)</u>

microTOF II - Bruker

Equipamento adquirido com recursos NAP-USP

<u>Laboratório de Metabolômica (Instituto de Química – USP)</u>

2 cromatógrafos a gás

Biomass
Systems and Synthetic Biology
Center

BBEST

Brazilian BioEnergy Science and Technology Conference

DESIGNING A SUSTAINABLE BIO ECONOMY

Campos do Jordão, 17 a 19 de Outubro de 2017

SAVE THE DATE

http://bbest.org.br Information: bbest@bbest.org.br

Advances in International and Brazilian Bioenergy Research

A Science and Policy Conference

Designing a Sustainable Bioeconomy

BIOMASS

Focus on sugarcane and other energy crops, including genomics, biochemistry, cell biology, physiology, plant breeding and farming technologies

BIOEFUEL TECHNOLOGIES

Focus on Processing and Engineering

BIOREFINERIES

Integrated focus on sugarchemistry, alcoholchemistry and bio-based chemicals

ENGINES

Focus on biofuel applications for motor vehicles including aviation

SUSTAINABILITY AND IMPACTS

Focus on social, economic and environmental studies, policy