

Smart specialization in the EU:

Relatedness, knowledge complexity and regional diversification

Ron Boschma

Utrecht University and Stavanger University

with Pierre-Alex Balland, Joan Crespo and David Rigby

Sao Paolo, 6 July 2017

structure of lecture

- 1. relatedness and diversification
- 2. knowledge complexity and diversification
- 3. technological diversification of European regions

4. implications for smart specialization policy

- smart specialisation is part of EU regional and innovation policy
- some **critiques**:
- perfect example of policy running ahead of theory
- lacking evidence-base
- building on anecdotal evidence, rather than the application of theoretically grounded methodologies

- objective of smart specialisation EU policy is to develop new activities in region, rather than to strengthen existing specializations in region
- **some features** of smart specialization policy:
- no 'one-size-fits all' policy: bottom-up strategy
- no duplication of policy: not 'more of the same'
- policy targeting potential new activities based on regional capabilities, rather than just being 'hot'

- this requires a basic understanding of how regions diversify, and why their capacity to diversify differs between regions
- new specializations are no random events: they are often strongly embedded in territorial capabilities
- local capabilities condition which new activities will be feasible to develop: they provide opportunities but also set limits to the diversification process in regions
- **new specializations** grow out of related activities, in which new activities combine and exploit knowledge and skills from **local related** activities

- Hidalgo, Klinger, Barabasi and Hausmann (2007): how **countries** build a CA in new export products
- countries develop new export products that are closely related to existing export products
- countries with **related variety**: more opportunities to diversify and higher economic growth
- Neffke, Henning and Boschma (2011): industrial diversification in 70 Swedish regions 1969-2002
- industries that are technologically **related** to preexisting sectors in a region had a higher probability to enter the region

2. knowledge complexity and diversification

- but smart specialisation is **not only** about developing new specializations in regions that have growth potential due to local related capabilities
- smart specialisation is also about developing new specializations in regions that are unique in the world: more complex that upgrade local economy (Hidalgo and Hausmann 2009)

• **complexity of knowledge** refers to the degree of its sophistication and the number of capabilities required to develop such new technology

- technological diversification of 282 European NUTS 2 regions (EU 27 + Norway + Switzerland) 1980-2009
- patent data from the European Patent Office (EPO):
 617 technology classes (IPC)
- entry-model, where y=1 if a region r gains a RTA in technology i, otherwise y=0
- RTA= share technology i in region r > share technology i in Europe
- main variables: relatedness density and knowledge complexity

- (1) technological relatedness between knowledge domains: based on frequency of co-occurrence of technology classes on patent documents
- (2) relatedness density: number of technologies j (%) related to technology i that are present in region

Region	Technology	Density (%)
lle de France	Biotech	10
lle de France	Nanotech	100
Rhone Alpes	Biotech	80
Rhone Alpes	Nanotech	0

Figure 1. European Knowledge Space

average relatedness of European regions: potential of regions to diversify into new technologies

- **knowledge complexity index** (KCI) based on method of reflection (Hidalgo & Hausmann 2009)
- **network-based indicator**: 2 mode network linking regions to technologies in which regions have RTA
- KCI combines information on:
- number of technologies in region: diversity of regions
- number of regions producing a technology: ubiquity of technologies
- **technology complexity** (Balland and Rigby 2016): eigenvector method

rec 2d A

3. technological diversification of European regions

label 1d

top 15 technologies by complexity

label 2d

rec.2d	label.2d	♦ label.1d ♦	eigen.2d ▼
4	Digital communication	Electrical engineering	100
3	Telecommunications	Electrical engineering	96.97
6	Computer technology	Electrical engineering	93.94
5	Basic communication process	Electrical engineering	90.91
2	Audio-visual technology	Electrical engineering	87.88
7	IT methods for management	Electrical engineering	84.85
9	Optics	Instruments	81.82
8	Semiconductors	Electrical engineering	78.79
16	Pharmaceuticals	Chemistry	75.76
12	Control	Instruments	72.73
15	Biotechnology	Chemistry	69.7
14	Organic fine chemistry	Chemistry	66.67
10	Measurement	Instruments	63.64
22	Micro-structure and nano- technology	Chemistry	60.61
13	Medical technology	Instruments	57.58

Table 3. Entry Models - Full Sample

_	Dependent variable: Entry (=1) 1990 – 2009						
	Baseline	Complexity	Controls	Full Model	Full Model (F.E.)		
	(1)	(2)	(3)	(4)	(5)		
Constant	0.1632872***	0.1632945***	0.1498963***	0.1639320***	-0.0117608		
	(0.0005543)	(0.0005543)	(0.0005242)	(0.0005722)	(0.0255653)		
Relatedness Density	0.0042477***	0.0042494***		0.0041635***	0.0037696***		
	(0.0000388)	(0.0000388)		(0.0000419)	(0.0000449)		
Knowledge Complexity		0.0000459^*		0.0000354	-0.0000575**		
		(0.0000199)		(0.0000211)	(0.0000215)		
Population (log)			0.0322163***	0.0172538***	-0.1155466***		
			(0.0008129)	(0.0008150)	(0.0148724)		
GDP per cap.			0.0000020***	0.0000005***	0.0000017***		
			(0.0000001)	(0.0000001)	(0.0000003)		
Population Density			-0.0000090***	-0.0000030***	0.0000198		
			(0.0000007)	(0.0000007)	(0.0000122)		
Tech. stock			-0.0000022***	-0.0000022***	-0.0000023***		
			(0.0000001)	(0.0000001)	(0.0000002)		
Tech. size			0.0000004**	0.00000005	0.0000013***		
			(0.0000002)	(0.0000002)	(0.0000002)		
Region fixed effects	No	No	No	No	Yes		
Time fixed effects	No	No	No	No	Yes		
Observations	498,785	498,785	466,814	466,814	466,814		
\mathbb{R}^2	0.0303005	0.0303106	0.0040004	0.0306804	0.0371538		
Adjusted R ²	0.0302985	0.0303068	0.0039897	0.0306659	0.0366399		

Note: The dependent variable entry equals one if a region r gains a new relative technological advantage in a given technology i during the corresponding 5-years window, and equals zero otherwise. All the independent variables are mean-centered and lagged by one period. Coefficients are statistically significant at the * p<0.05, ** p<0.01, *** p<0.001 level. Heteroskedasticity-robust standard errors (clustered at the region and technology level) in parentheses.

High

Low

Dependent variable: Entry (=1) | 1990 – 2009

Low

High

Low

Table 4. Entry Models by Level of Relatedness

High

	High Relatedness	Low Relatedness	High Relatedness	Low Relatedness	High Relatedness	Low Relatedness
	(1)	(2)	(3)	(4)	(5)	(6)
Constant	0.3669312***	0.0309562***	0.3614363***	0.0405249***	0.2306594	0.0903739**
	(0.0023488)	(0.0006430)	(0.0026666)	(0.0009141)	(0.1847726)	(0.0327663)
Knowledge Complexity	0.0004628***	-0.0000389	0.0002671*	-0.0000062	0.0002526*	-0.0000359
	(0.0001007)	(0.0000272)	(0.0001127)	(0.0000395)	(0.0001124)	(0.0000419)
Population (log)			0.0433384***	0.0224518***	-0.0657516	0.0488210^*
			(0.0044990)	(0.0014247)	(0.0934813)	(0.0200723)
GDP per cap.			0.0000004	0.0000015***	0.0000016	0.0000002
			(0.0000004)	(0.0000001)	(0.0000016)	(0.0000005)
Population Density			0.0000016	-0.0000057***	0.0000252	-0.0000202
			(0.0000034)	(0.0000015)	(0.0000569)	(0.0000281)
Tech. stock			-0.0000026***	0.0000002	-0.0000036***	0.0000003
			(0.0000004)	(0.0000002)	(0.0000007)	(0.0000004)
Tech. size			0.0000088***	0.0000021**	0.0000139***	0.0000018^*
			(0.0000012)	(0.0000007)	(0.0000013)	(0.0000007)
Region fixed effects	No	No	No	No	Yes	Yes
Time fixed effects	No	No	No	No	Yes	Yes
Observations	42,164	72,557	34,309	47,029	34,309	47,029
\mathbb{R}^2	0.0005119	0.0000281	0.0053447	0.0127176	0.0584039	0.0334063
Adjusted R ²	0.0004882	0.0000143	0.0051707	0.0125916	0.0515479	0.0282820

University of Stavanger Note: High relatedness models only include the top 10% region - technology observations in terms of relatedness density. Low relatedness models only include the bottom 10% region - technology observations in terms of relatedness density. The dependent variable entry equals one if a region r gains a new relative technological advantage in a given technology i during the corresponding 5-years window, and equals zero otherwise. All the independent variables are mean-centered and lagged by one period. Coefficients are statistically significant at the *p < 0.05, **p < 0.01, ***p < 0.001 level. Heteroskedasticity-robust standard errors (clustered at the region and technology level) in parentheses.

Table 5. Growth Models - Full Sample

	Dependent variable: Technological growth 1990 – 2009					
	Baseline (1)	Complexity (2)	Controls (3)	Full Model (4)	Full Model (F.E.)	
Constant	13.7038900***	13.7207500***	13.5505400***	13.5218000***	73.6810700***	
	(0.1707395)	(0.1707130)	(0.1773364)	(0.1767446)	(7.4333840)	
Relatedness Density	0.4642356***	0.4650504***		0.3519811***	0.2038730***	
	(0.0101046)	(0.0101016)		(0.0113171)	(0.0119662)	
Knowledge Complexity		0.2083142***		0.1811793***	0.1236107***	
		(0.0079042)		(0.0082521)	(0.0079222)	
Population (log)			15.6830000***	13.9970400***	57.4033100***	
			(0.2933130)	(0.2957986)	(4.4582030)	
GDP per cap.			0.0004739***	0.0003251***	0.0000061	
			(0.0000201)	(0.0000205)	(0.0000892)	
Population Density			-0.0039671***	-0.0033924***	-0.0031405	
			(0.0002246)	(0.0002242)	(0.0032979)	
Tech. stock			-0.0004838***	-0.0005061***	-0.0051211***	
			(0.0000325)	(0.0000326)	(0.0001068)	
Tech. size			0.0010760***	0.0007250***	0.0016523***	
			(0.0000560)	(0.0000565)	(0.0000584)	
Region fixed effects	No	No	No	No	Yes	
Time fixed effects	No	No	No	No	Yes	
Observations	556,721	556,721	521,175	521,175	521,175	
\mathbb{R}^2	0.0039793	0.0055811	0.0072392	0.0103975	0.0671133	
Adjusted R ²	0.0039775	0.0055776	0.0072297	0.0103842	0.0666674	

University of

Stavanger

Note: The dependent variable growth corresponds to the rate of technological growth (growth in the number of claims) of a technology i in a region r from period t to period t+1. All the independent variables are mean-centered and lagged by one period. Coefficients are statistically significant at the * p < 0.05, ** p < 0.01, *** p < 0.001 level. Heteroskedasticity-robust standard errors (clustered at the region and technology level) in parentheses.

Table 6. Growth Models by Level of Relatedness

	Dependent variable: Technological growth 1990 – 2009						
	High Relatedness	Low Relatedness	High Relatedness	Low Relatedness	High Relatedness	Low Relatedness	
	(1)	(2)	(3)	(4)	(5)	(6)	
Constant	53.7695700***	-6.0870230***	49.6868700***	-8.4233190***	-31.0214900	-10.3398200	
	(0.7609844)	(0.1377738)	(0.8003883)	(0.2020142)	(60.1171500)	(5.9970820)	
Knowledge Complexity	0.3256727***	-0.0096395	0.2581051***	-0.0107926	0.2276855***	-0.0305587**	
	(0.0340018)	(0.0069824)	(0.0361123)	(0.0104075)	(0.0344880)	(0.0101187)	
Population (log)			28.4596000***	-3.3740520***	-26.7761900	-2.6496500	
			(1.4859160)	(0.3181761)	(31.0434900)	(4.0115730)	
GDP per cap.			0.0001111	-0.0003621***	0.0037211***	0.0001280	
			(0.0001073)	(0.0000220)	(0.0005146)	(0.0000970)	
Population Density			-0.0048569***	0.0006342*	-0.0729367***	-0.0052360	
			(0.0009146)	(0.0002874)	(0.0144477)	(0.0046896)	
Tech. stock			-0.0020091***	-0.0001944*	-0.0080889***	-0.0015154***	
			(0.0001021)	(0.0000909)	(0.0003040)	(0.0002594)	
Tech. size			-0.0012314***	-0.0013100***	0.0001989	-0.0011047***	
			(0.0001257)	(0.0002712)	(0.0001165)	(0.0002697)	
Region fixed effects	No	No	No	No	Yes	Yes	
Time fixed effects	s No	No	No	No	Yes	Yes	
Observations	63,797	74,199	54,992	48,659	54,992	48,659	
\mathbb{R}^2	0.0017529	0.0000365	0.0115695	0.0155464	0.1329042	0.0509171	
Adjusted R ²	0.0017372	0.0000230	0.0114617	0.0154250	0.1289760	0.0460551	

U

University of Stavanger Note: High relatedness models only include the top 10% region - technology observations in terms of relatedness density. Low relatedness models only include the bottom 10% region - technology observations in terms of relatedness density. The dependent variable growth corresponds to the rate of technological growth (growth in the number of claims) of a technology in a region r from period t to period t+1. All the independent variables are mean-centered and lagged by one period. Coefficients are statistically significant at the p<0.05, p<0.01, p<0.00 level. Heteroskedasticity-robust standard errors (clustered at the region and technology level) in parentheses.

4. implications for smart specialization policy

• **objective**: develop a smart specialization policy framework that is **evidence-based**, and that can assist policy makers to **identify possible diversification strategies** for regions, depending on their existing capabilities

• **relatedness**: to assess **potential risks** of alternative diversification strategies for regions

4. implications for smart specialization policy

Ile de France region

Lancashire region

Extremadura region

- **objective**: to tackle the perceived **lack of a strong theoretical and empirical foundation** for smart specialization policy in Europe
- **policy framework** is in line with features of smart specialization policy: (1) no 'one-size-fits all' policy: bottom-up strategy; (2) policy targeting potential new activities based on regional capabilities, rather than just being 'hot'; (3) no duplication of policy efforts
- policy framework is evidence-based: assesses the potential risks (based on relatedness) and potential benefits (based on complexity) of alternative diversification strategies of regions

- evidence-based: follows findings on study on regional diversification in Europe:
- **positive** effect of **relatedness** on the **entry** probability and **growth** of new technology in region
- **no** or **negative effect** of complexity of technology on **entry** probability of that technology in region
- **positive effect** on **entry** when complex technology **related** to existing technologies in region
- **positive effect** on **growth** when complex technology **related** to existing technologies in region

- yet, we are still **far from** comprehensive policy framework:
- **design** and implementation of smart spec policy?
- relevant for **peripheral regions**: bring it in line with objectives of Cohesion Policy?
- inherent **tension** between prioritising based on relatedness in our policy framework and reliance on decentralized entrepreneurial discovery process
- besides regional capabilities, what is role of extraregional linkages?
- should smart specialisation enable **jumps** or not?

thank you for your attention!

where to intervene in the industrial structure of a region?

related and unrelated regional diversification

region A

