

Enhanced Oil Recovery

Osvair Vidal Trevisan

trevisan@unicamp.br

Kokal and Al-Kaabi, 2012

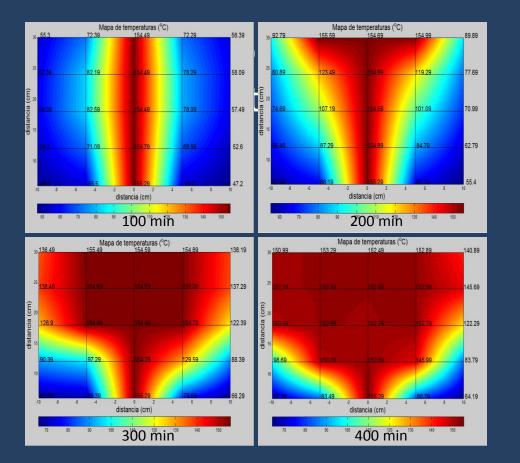
Oil Recovery

US EOR PROD	UCTION											Table 1
	1992	1994	1996	1998	2000	2002	2004	2006	2008	2010	2012	2014
Thermal Steam	454,009	.415,801	419,349	439,010	417.675	365,717	340,253	286,668	275,192	273,448	300,762	284,725
Cumbustion in situ Hot water Total thermal	4,702 1,980 460,691	2,520 250 418,571	4,485 250 424,084	4,760 2,200 445.970	2,781 306 417,675	2,384 3,360 371,461	1,901 3,360 345,514	13,260 4,370 304,298	17,025 1,776 293,993	16,868 1,676 291,992	20,590 1,703 323,055	20,590 1,703 307,018
Chemical Micellar-polymer Polymer	254 1,940	64 1,828	139	139	1,598					70		
Caustic/alkaline Surfactant Total chemical	2,194	1,892	139	139	60 1 ,658	60 60	60 60			70		ar a Crista State and State State and State
Gas Hydrocarbon miscible/												
immiscible CO, miscible	113,072 144,973	99,693 161,486	96,263 170,715	102,053 179,024	124,500 189,493	95,300 187,410	97,300 205,775	95,800 235,344	81,000 240,313	81,100 272,109	81,100 308,564	127,500 292,735
CO, immiscible Nitrogen Flue gas (miscible	95 22,580	23,050	28,017	28,117	66 14,700	66 14,700	102 14,700	2,698 14,700	9,350 19,700	9,160 9,000	43,657 8,000	42,795 8,000
and immiscible) Other Total gas	11,000 6,300 298,020	4,400 288,629	4,350 299,345	4,350 313,544	328,759	297,478	317,877	348,542	350,363	371,369	441,321	471,030
Other Microbial Total other	2 2	2 2										
Grand total	760.907	709,094	723,568	759,653	748,092	888.997	663,451	652,840	644.356	663.431	764,376	778,048

usia gi

O&G Journal, 2014

Thermal Methods Steam Injection Lab tests

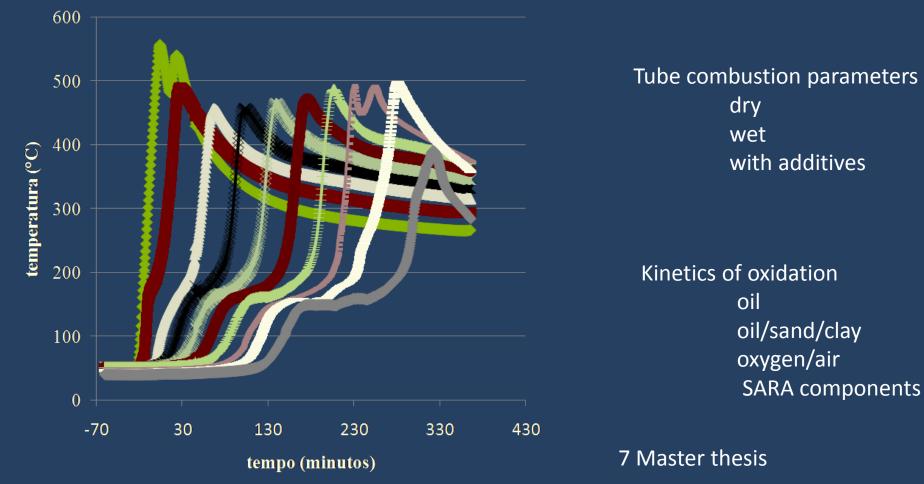


Thermal Methods Steam Injection Lab tests

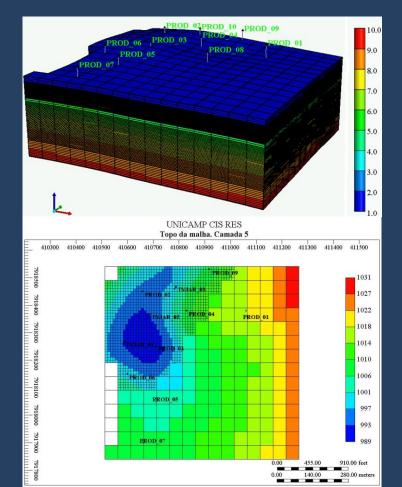
Steam Injection parameters varying steam quality with nitrogen with solvent with flue-gas SAGD

5 Master thesis

Thermal Methods In-situ Combustion Lab tests



Thermal Methods In-situ Combustion Lab tests

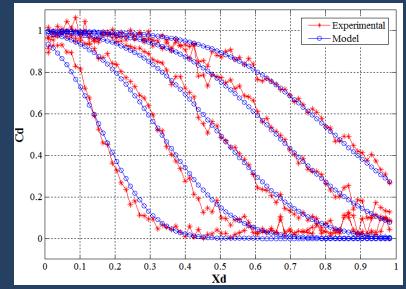


Thermal Methods

Simulation

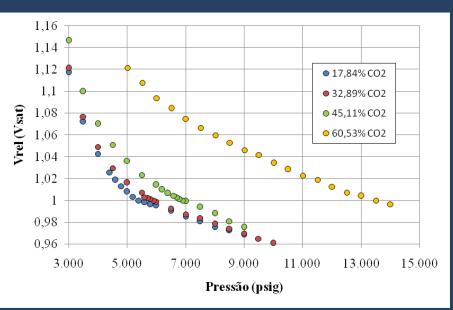
In-situ combustion reaction modeling scale effects matching at lab scale field scale modeling

Steam injection lab scale modeling SAGD variations mechanisms in NFR


5 Master thesis, 1 PhD

Rock-fluid Properties Dispersion in heterogeneous media Hysteresis in relative permeability Effects of dissolution on the rock properties Wettability at high pressure

5 Master thesis , 2 PhD



Miscible Methods

(Gas Injection)

Fluid Properties

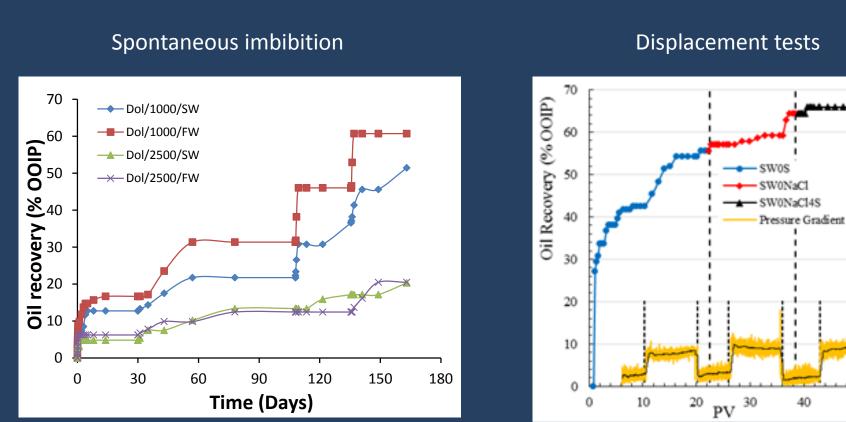
PVT of light oil – CO₂
CO₂ partition between oil and water
Diffusion and swelling of light oil with CO₂
IFT at high pressure

2 Master thesis, 1 PhD

Designed Water

Oil recovery

Spontaneous imbibition Displacement tests Effects of dissolution on the rock properties

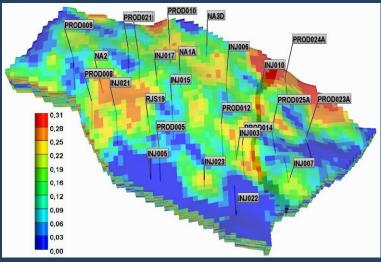


Designed Water

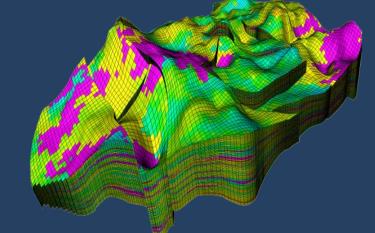
Pressure Gradient (kPa/m)

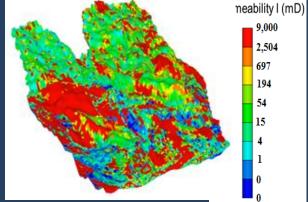
SW0NaC14S

Displacement tests


2 Master thesis, 1 PhD

- Mission: improve decision making process related to reservoir development and management
- 20 years of experience
- Team of 60 people (professors, researchers, students and support)
- Projects with industry: 46
- Articles: +430
- Academic : +150
- Prizes: 26
- Students (Concluded): +150
- Support software development
- Creation of benchmark cases used worldwide

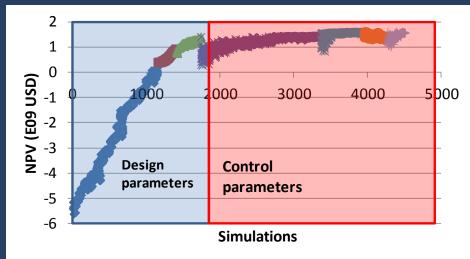

UNISIM-I Benchmark (UNISIM, 2013)


- Carbonate Reservoirs*
- Fractured Reservoirs Simulation*
- WAG, CO₂, Treatment Fluid*
- Polymer Flooding*
- Model Based Decision Analysis
- Intelligent fields
- Value of Information

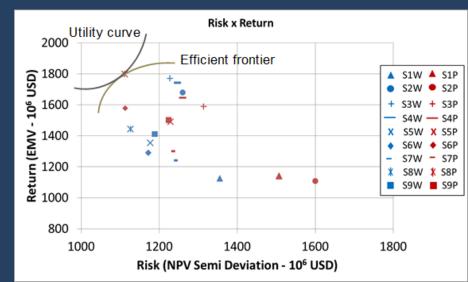
UNISIM-II Benchmark (UNISIM, 2016)

Reservoir Modeling and Optimization of Integrated Systems
Surfaces

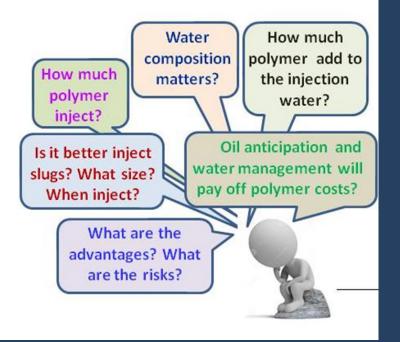
- Uncertainty reduction with dynamic data assimilation and integration with 4D Seismic
- Applications in Large and Complex Models



- Pre-Salt Carbonate Reservoirs
 - Representation of Critical Heterogeneities in reservoir simulation models
 - Fluid Treatment
 - Optimization of WAG and CO2 injection
 - Importance of models in the decision of: design G1 (well spacing, prod system, ..); control G2 (cycles, rates, ...)
 - Consequences on the performance of the filed under uncertainties (risk analysis)



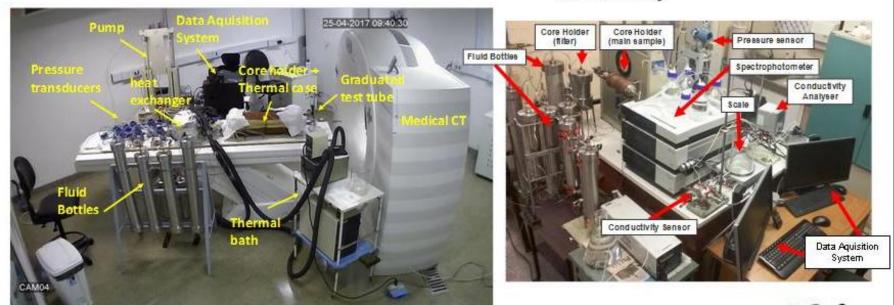
- Pre-Salt Carbonate Reservoirs
 - Representation of Critical Heterogeneities in reservoir simulation models
 - Fluid Treatment
 - Optimization of WAG and CO₂ injection
 - Importance of models in the decision of: design G1 (well spacing, prod system, ..); control G2 (cycles, rates, ...)
 - Consequences on the performance of the filed under uncertainties (risk analysis)
- Polymer Flooding
 - Complete risk analysis integration geologic/economic uncertainties with polymer properties that affect the efficiency of the recovery process
 - degradation, retention, inaccessible pore volume, dependence of viscosity with concentration, salinity, injectivity)
 - Complete economic analysis for 2 complex cases.



Polymer Design Rheology and Degradation

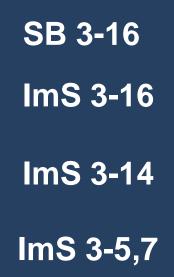
 Focus: Tailoring of chemical flooding according to the target reservoir

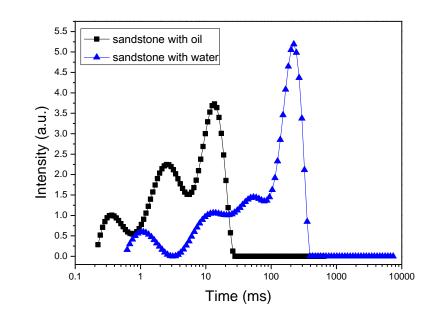
Fluid Design: viscous and elastic properties, critical concentration, influencing factors



Polymer Sweep Eficiency in Heavy-oil Reservoirs

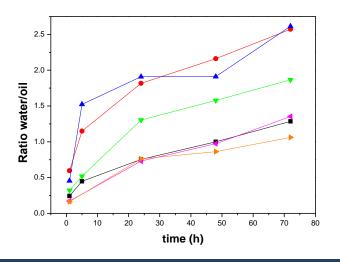
• Experimental Setup 1: Injection strategies, injectivity and displacement efficiency Experimental Setup 2: Retention, Adsorption, RF, RRF, IPV and in-situ viscosity

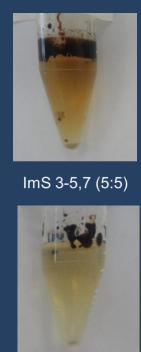



Chemistry Institute

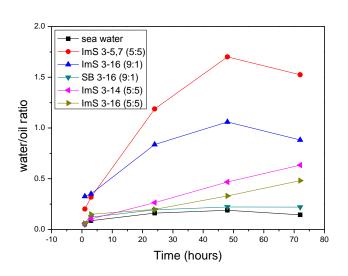
NMR Investigation on Rock Wettability

EOR by combination of zwitterionic and nonionic surfactants





Chemistry Institute


NMR Investigation on Rock Wettability

Sandstone

Limestone

ImS 3-16 (9:1)

Thank You!

Osvair Vidal Trevisan trevisan@unicamp.br