Big Data em Saúde: Desafios e Perspectivas

Agma J. Machado Traina

agma@icmc.usp.br

Databases and Images Research Group
Computer Science Department
University of São Paulo (USP) at São Carlos
Brazil

Introduction

Current Scenario...

Complex big data everywhere

Introduction

Current Scenario... Big Data

150 exabytes or 10¹⁸ bytes of new healthcare data generated yearly in USA, growing 48% annually ¹

¹ Nature Medicine | VOL 25 | Jan 2019 | 24–29 | <u>www.nature.com/naturemedicine</u> Stanford Health. Harnessing the power of data in health. *Stanford Medicine 2017 Health Trends Report* (2017).

Introduction: Big Data challenges

 Development of new, scalable and expandable big data infrastructure (volume, velocity, variety),

Volume

6 Vs

Visualization

Variety

Veracity

Velocity

Value

- analytical methods (veracity and value and
- visualization techniques to support understanding data/information/knowledge gathered yielding better decisions and outcomes.

Current Scenario... Big Data

A great need for developing **automated systems** that could help users to **retrieve complex data** from the databases, employing their inherent **content** supported by their **context**

Thus, for each type of data it is important:

- Extract the relevant **features** that **best describe** them
- ► Get **dependable** data
- ► Index the data for fast retrieval/processing (scalability)
- ► Process queries on their content (**Similarity queries**)

DIKW Pyramid

garbage in ► garbage out

DIKW Pyramid

Considering the *DIKW* Pyramid:

- ► How are my data?
- ► What the data can provide?
- ► When the data is useful?
- ► Who owns the data? Who benefits from the data?

Ethical issues

Ethical issues: some studies

- United Kingdom survey (April 2018): 65% have reservations on allowing personal data to improve healthcare and is unfavorable to Al replacing doctors and nurses [1]
- **Germany**: 83% medical students are motivated with AI, but skeptical regarding diagnosing ... [2]
- **USA**: ~50% healthcare organizations decision-makers are not confident that AI will improve medicine, but ~ 50% of them have reservations [3]:
 - produce fatal errors,
 - not work properly,
 - not meet currently hyped expectations
- Fenech M, Strukelj N, Buston O. Ethical, social and polictical challenges of artificial intelligence in health. 2018 April. http://futureadvocacy.com/wp-content/uploads/2018/04/1804_26_FA_ETHICS_08-DIGITAL.pdf.
 Pinto dos Santos D, Giese D, Brodehl S, Chon SH, StaabWet al. Medical students' attitude towards artificial intelligence: a multicentre survey. Eur Radiol 2018 Jul 6. https://doi.org/10.1007/s00330-018-5601-1 PMID: 29980928
 Intel Corporation. Overcoming barriers in Al adoption in healthcare. 2018 April https://newsroom.intel.com/wp-content/uploads/sites/11/2018/07/healthcare-iot-infographic.pdf.

Ethical issues: Principles

- transparency
- fairness
- non-maleficence
- liability
- privacy
 - ☐ European General Data Protection Regulation (GDPR): Europe
 - ☐ Health Insurance Portability and Accountability Act (HIPAA): USA

. .

Explainable AI (XAI) vs. Black Box

Big Data still has meaningfull challenges!

- Development of new, scalable and expandable big data infrastructure (volume, velocity, variety),
- analytical methods (<u>veracity</u>, <u>value</u> and <u>visualization</u>)

Complex data with Missing values

- Big data applications must deal with:
 - Large number of data elements (i.e., cardinality)
 - High dimensionality (i.e., number of attributes)
 - Complexity of the features that describe the attributes
 - Non-dimensional data (e.g. DNA sequences)

Missing data can occur due to:

- ▶ Preventable errors or mistakes (e.g. failing to appear for a medical exam,...etc).
- ➤ Problems **outside of control** (e.g. failure of the equipment, low battery,...etc).
- Privacy or security reason.
- ▶ **Legitimate** (e.g. a survey question that does not apply to the respondent).

•	A_1	A2	A3	A4	A5
Obji					
Obj ₂					
Obj ₃					
Obj ₄					
Objs					

2	A_1	A2	A3	A4	A5
Obji		?		?	
Obj ₂	?	?			
Obj ₃	?	?	?	?	?
Obj4		?			
Objs		?			?

Conclusions

Complex big data bring new interesting challenges:

- regarding BD infrastructure and analytics as well
- Access methods to query processing (high-dimensional and adimensional data),
- Scalable approaches to deal with missing data,
- New mechanisms for organizing the data,
- To ease the problem of "garbage in garbage out"
- A closer relationship with related fields to gather/convey to the users the knowledge & wisdom needed and desired.

Many opportunities to work/research!

Thanks!

- To all the members of the Databases and Images Group (GBdI)
 ICMC-USP/São Carlos and MiVisBD research
- To the Ciência e Inovação Digital em Saúde FAPESP organizers
- To **you all** for attending to this panel

