

Chemistry, Energy and Climate Change

Richard Pike Royal Society of Chemistry

Thursday 26 February, 2009
Physics and Chemistry of Climate Change
Entrepreneurship Meeting
Sao Paulo

RSC | Advancing the Chemical Sciences

The Energy Challenge

ENERGY REVIEW

A Report

and the second

Some key energy facts

- UK energy consumption statistics show that 30% of the energy generated is lost before it reaches end-user
- 42% of non-transport energy consumption is used to heat buildings, and in turn, a third of this energy is lost through windows
- Transportation represents 74% of UK oil usage and 25% of UK carbon emissions
- To achieve the 2010 EU 5.75% bio-fuels target would require 19% of arable land to be converted from food to bio-fuel crops

Chemical science can provide energy that is.....

Secure

Affordable

Sustainable

Addressing climate change

Key messages are:

Saving energy is critical

Nurture and harness research skills

 Provide vision, mechanisms and funding to deliver solutions

Energy usage depends on the type of fuel – world picture

FOSSIL AND FISSILE

11.1 Gt/annumoil equivalent

Oil, gas, coal [80%]

Uranium [7%]

RENEWABLES

Biomass [~10%]
Photo-voltaics, wind, tidal, hydro [~3%]

Carbon neutral with radioactive waste

~40% of 8.8 GtC/annum (3.5GtC) into atmosphere of 5,300,000 Gt where already around 750 GtC

Global and national strategies must be integrated

- Global strategy must be based <u>not</u> on 'fossil fuels are running out', <u>but</u> 'we must address climate change'
- Major consumer country strategies (eg UK) must
 - -respond to declining local oil and gas supply
 - -conserve for high-value applications
 - -improve utilisation and efficiencies throughout the supply chain
 - -innovate with these and other non-fossil energy sources

Some early observations are alarming

- Focus on some, trivial energy-saving schemes is detracting from the 'big picture'
- Lack of global, decisive strategy is leading to extraordinary contradictions [melting of permafrost → more opportunities to drill for oil]
- Lack of appreciation of numbers, mechanisms and processes is inhibiting good decision-making [yields, life cycle analysis, pros and cons, economics.....eg balance of wind vs tidal, solar vs biofuel]

Future energy portfolios must address usage and waste management

CCS could be the most massive industrial chemical process in history

-globally tens of millions of tons/day

A longer-term scenario has extensive fossil-fuel CCS, biomass and hydrogen

Carbon neutral with radioactive waste

Carbon neutral using hydrogen from both hydrocarbons ('reforming') and electrolysis

Advancing the

ELECTRICITY AND HYDROGEN STORAGE KEY

Currently even 'clean fuels' from fossil sources are very energy intensive

-solving this is all chemistry

Loss as carbon dioxide in production process [could be captured with CCS]

Carbon dioxide emissions

100%

Natural, biomassderived or coalderived gas

Gas conversion

Liquid fuel

SOx- and NOxfree combustion in consuming country

Catalyst technology is key to improving production efficiencies

In general, whole-life assessments must be undertaken for all energy processes

Advancing the

technology

Sulphur and trace heavy metals

Nuclear cycle requires significant chemical science support

Recycling of recovered unused uranium + plutonium

Key technologies are in processing efficiencies, waste encapsulation, environmental and biological monitoring, and risk management

Radioactive solids and gases as waste material [some with half-lives of more than a million years]

Long-term sustainable energy is likely to be from solar photo-voltaics (SPV) and concentrated solar power (CPS)

Even wind and tidal will require anti-corrosion coatings, based on nano-technology developments

RSC | Advancing the Chemical Sciences

Key technologies are in more costeffective manufacture, energy conversion (from global annual average of 174 W/m² at Earth's surface), transmission efficiency, electricity storage, hydrogen storage and new materials for sustainability

Key issue will be making the best use of all resources – all chemistry driven

OPTIMAL AREA UTILISATION FOR FOOD, BIOMASS, PHOTO-VOLTAICS, POPULATION AND INFRASTRUCTURE?

This is the principal oil 'slate' for 'green' substitution [34% of energy]

Illustrative substitutions by end-user application

Ethanol production steps by feedstock and conversion techniques

Biodiesel production steps

Biofuel yields per hectare for selected feedstock

We need to consider LCA and carbon payback periods

We must also encourage people to think 'out of the box'

- Artificial photosynthesis to capture existing carbon dioxide in the atmosphere
- Combining this with photosynthetic electricity generation
- Massive reforestation, including genetically-modified plants (or even sea plankton) to capture carbon dioxide more rapidly, and recognition of fertiliser requirements
- Realisation that captured carbon dioxide must be 'stored' for thousands of years – biological devices will have to be prevented from decaying to avoid rerelease of the gas
- Use of CCS even for biofuels, to provide net reduction in atmospheric carbon dioxide
- Reliable and safe CCS at the local level with micro-generation, and even for vehicles
- Photo-catalytic and biochemical decomposition of water to generate hydrogen

Chemical science can support the entire value chain and life-cycle analysis

RESOURCES

- -Geochemistry
- -Quantification
 - -Extraction
- -Environmental monitoring
 - -Fertilisers
 - -Biomass development
 - -Analytical chemistry

CONVERSION

- -Catalysis
- -Novel processes
- -Nuclear reactor science
- -Environmental monitoring
- -Materials chemistry
 - -Hydrogen storage
 - -Fuel cells
 - -Photo-voltaic efficiencies
 - -Energy-product integration
- -Battery technology
- -Light-weight materials
 - -Analytical chemistry

WASTE MANAGEMENT

- -Carbon capture and storage
 - -Nuclear fuel processing
 - -Nuclear waste storage
 - -Epylronmental monitoring
- -Recyclable materials
 - -Biochemistry and genetics
- -Analytical chemistry

It will also be essential to have a supply chain of skills to support this

Key messages are:

Saving energy is critical

Nurture and harness research skills

 Provide vision, mechanisms and funding to deliver solutions

Key Royal Society of Chemistry document (2005)

Chemistry, Energy and Climate Change

Richard Pike
Royal Society of Chemistry

Thursday 26 February, 2009
Physics and Chemistry of Climate Change
Entrepreneurship Meeting
Sao Paulo

RSC | Advancing the Chemical Sciences

The Energy Challenge

ENERGY REVIEW

A Report

May 2000