The Dynamics of Thylakoid Membranes from Higher Plants

Fikret Mamedov Department of Photochemistry and Molecular Science, Uppsala University

Molecular Biomimetics / Fotomol / Ångström laboratory

UPPSALA UNIVERSITET

Photosynthesis – a global perspectivo

Takes place almost every green plants, algae and p can be found

Photosynthesis – a global perspective

- Energy for photosynthesis comes from sun light
- Two sets of reactions light dependent and light independent
- Affected by temperature, light intensity/quality and CO₂ level

Photosynthesis – a global perspective

- Ultimate energy sourse for living organisms –all food and oxygen in Earth's biosphere arrive from photosynthesis
- Sourse for all fossil fuel reserves products of photosynthesis were converted into fuels over millions of years
- One tree makes 12 kg of biomass and outputs 9400 L of oxygen in 24 h – enough for family of FIVE!

Photosynthesis – where it all takes place

Photosynthetic membranes

Photosynthetic bacteriaCyanobacteriaMarine cyanobacteriaRhodopseudomonas viridisSynechocystis sp. PCC 6803Prochlorococcus marinum

Green alga Chlamydomonas reinhardtii

Chloroplast Spinacia oleracia L.

Domains of the thylakoid membrane from higher plants

Thylakoid membrane complexes and electron/proton transfer reactions

Photosystem I

- Light driven plastocianine feredoxine oxidoreductase
- Electron transfer reactions
- Analogous to green sulphur and hellobacteria (iron sulfur type reaction center)
- ~ 300 kDa, about 15 protein subunits
- Trimer in cyanobacteria, monomer in higher plants
- Crystal structure is solved to 2.0 Å resolution
- Branched electron transfer is debated

Cytochrome b₆f complex

- Plastoquinone plastocyanine oxidoreductase
- Electron and proton transfer reactions
- Q cycle to translocate proton through the membrane
- Found in the dimeric form
- Analogous to Cytochrome bc₁ complex in photosynthetic bacteria and mitochondria
- Crystal structure is solved to the 3.0 Å resolution
- A single Chl molecule is found; function is unknown

Photosystem II

- Light driven water plastoquinone oxidoreductase. Can split water and O₂ is released as a byproduct, turnover rate is about 100 molecules per second
- Electron and proton transfer reactions
- Analogous to purple bacteria (quinone type reaction center)
- ~ 900 kDa, more than 25 protein subunits, structurally highly heterogenic
- Operates at highly oxidizing potentials
- Crystal structure is solved to the medium 3.0 Å resolution
- Water oxidation mechanism is unknown

The catalytic site of Photosystem II CaMn₄ cluster and the S-state cycle

Oxygen release pattern: the S state cycle

Distribution of Photosystems in the thylakoid membrane from higher plants

Stroma lamellae

Methods to study photosynthetic complexes : Biochemistry

- Separation of different parts of the thylakoid membrane (different domains) without disturbing their native composition
- Isolation and purification of the photosynthetic membranes and complexes on the different levels – chloroplasts, thylakoid membranes, PSI or PSII membranes, PSI and PSII core complexes, reaction centers etc. from plants, green algae and cyanobacteria
- Supramolecular and protein composition analysis of different complexes in the thylakoid membrane

Methods to study photosynthetic complexes : Biochemistry

Preparation	Activity (i.e. PSII oxygen evolution, μ mol O ₂ / mg ChI h)	EPR signal
Cells, chloroplasts	~ 80	Norman your many when the second
Thylakoid embranes	120	······
PSII membranes	500 - 700	
PSII core reparations	~ 5000 ———	man Anna Anna
Reaction Center preparations	0	

Methods to study photosynthetic complexes: Biophysics and Spectroscopy

- Electron and proton transport measurements
- Optical and fluorescence spectroscopy; time resolved measurements
- EPR spectroscopy conventional and advansed (pulse) methods
- Application of the short (ns) laser flashes to study different intermediates of the catalytic meachanisms (i.e. S states)

Variable fluorescence

Thermoluminescence

Electron Paramagnetic Resonance (EPR) spectroscopy from PSII

Electron Paramagnetic Resonance Spectroscopy on the S-states

Photosystem II life cycle photoinhibition / repair cycle

- Photosystem II is highly vulnerable to environmental stress
- Exhibit functional and structural heterogeneity and unevenly distributed in the thylakoid membrane
- Pocess several protective meachanisns such as energy dissipation in antenna, xanthophyll cycle, protein phosphorylation, state transition, etc
- Excess of light leads to inhibition of Photosystem II (photoinhibition). At the normal day light conditions every 30 min one Photosystem II is destroyed
- Reparation of Photosystem II is a complex process, which takes place in the different parts of the thylakoid membrane and requires the lateral movement of Photosystem II centers in the thylakoid membrane

Photosystem II life cycle Photoinhibition

How to study Repair process?

- Separation of the thylakoid domains and study of their biochemical and biophysical properties
- Application of the imaging technology confocal fluorescence miscroscopy, EPR imaging, etc.
- Biogenesis of the photosynthetic complexes. In this case, the assembly and activation of the PSI, PSII or cyt b₆f complexes can be studied during greening of the etiolated plants
- Photoactivation experiments (assembly of the CaMn₄ –cluster) (dark gron alga are an excellent model)

Understanding membrane dynamics – study of the thylakoid membrane domains

- Non-invasive, two phase separation of the different fractions of thylakoid membrane
- Biochemical and biophysical characterization of PSII, PSI and Cyt b₆f complex (antenna properties, protein composition, electron transfer reactions)

Isolation of the different membrane fractions Two-phase separation technique

The end membrane (End of Grana) and the purified stroma lamellae (Y100) also can be separated

Characterization of Photosystem II in different fractions

Stroma lamellae

Domain	O ₂ evolution (μmol/mg of Chl×h)	O₂ evolving centers (% of total PSII centers)	Fv/Fo	Chl a/b (mol/mol)
Grana Core	250-300	91	0.87-1.30	1.8-2.0
Grana	200-250	84	0.81-1.10	2.2-2.4
Margins	102	66	0.45-0.50	3.0-3.3
Stroma	80	43	0.27	4.5-5.0
Y100	0	0	0.20	6.0-6.7
Thylakoids	120	80	0.70	2.9

Thylakoid membrane domains Quantification of PSI and PSII

Eder Spectroscopy Andrew Spectroscopy Chemically or light or distribution Dark adapted sample or distribution of the spectra of the sp

Thylakoid membrane domains Antenna properties

State transition phenomenon

77 K fluorescence spectra

Thylakoid membrane domains Antenna properties

State transition phenomenon

77 K fluorescence spectra

Thylakoid membrane domains Supramolecular composition of Photosystem II

of different fractions from the th

Immunoblot detection

Thylakoid membrane domains Supramolecular composition of Photosystem II

Thylakoid membrane domains Electron transport properties – EPR spectroscopy

S₂ state multiline

Domain of the thylakoid	Tyr _D ^{ox} %	Q _A ⁻ Fe ²⁺ %	S ₂ State %	O ₂ evolution %
Grana Core	100	100	100	100
Grana	82	94	92	81
Margin	59	39	40	37
Stroma	35	31	33	29
Y100	15	13	0	0
Thylakoid	66	70	81	43

signal

Thylakoid membrane domains Electron transport properties – Fluorescence

Flash-induced fluorescence decay in different fractions

Domain	Q _B binding, ms	Photoacti- vation, min	Q _B binding, ms
Y100	29	Dark grown	32
Stroma	29	2	27
Margin	46	5	18
		10	14
		30	12
Grana	6.5	60	10
Grana Core	5.9	Light grown	8

Domain	Recombi- nation	Photoacti- vation, min	Recombi- nation
Y100	39	Dark grown	90
Stroma	44	2	110
Margin	90	5	170
		10	460
		30	720
Grana	170	60	670
Grana Core	280	Light g r own	930

Thylakoid membrane domains Conclusions on the repair process

- Photosystem II migrates from the stroma lamellae to the grana during reparation process. Concomitantly with this lateral migration:
- The number of the Photosystem II centers is gradually increases (from 5 to 60% of the total amount)
- Supramolecular and protein composition is changing from the minimal monomeric protein unit to the fully assembled PSII supercomplexes
- Electron transport on both acceptor and donor side is activated leading to the fully competent centers

Special thanks to: Stenbjorn Styring Per-Åke Albertsson Eva-Mari Aro Marjaana Suorsa Yagut Allakhverdiyeva

Molecular Biomimetics, Uppsala University, Sweden Biochemistry, Lund University, Sweden Biology, University of Turku, Finland

Botanical Garden View from Uppsala Castle